File size: 3,306 Bytes
298e8c7 717ea4e a45a941 298e8c7 f29c0a8 298e8c7 15c4eae 298e8c7 8115677 298e8c7 717ea4e f29c0a8 717ea4e 298e8c7 717ea4e 298e8c7 717ea4e 298e8c7 8115677 298e8c7 717ea4e 8115677 298e8c7 717ea4e 298e8c7 f29c0a8 298e8c7 f29c0a8 298e8c7 f29c0a8 298e8c7 f29c0a8 8115677 f29c0a8 298e8c7 8115677 298e8c7 f29c0a8 298e8c7 8115677 298e8c7 f29c0a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
language:
- en
license: mit
library_name: transformers
datasets:
- fnlp/AnyInstruct
- fixie-ai/boolq-audio
- fixie-ai/soda-audio
- speechcolab/gigaspeech
---
# Model Card for Ultravox
Ultravox is a multimodal Speech LLM built around a pretrained [Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B) and [Whisper-small](https://huggingface.co/openai/whisper-small) backbone.\
See https://ultravox.ai for the GitHub repo and more information.
## Model Details
### Model Description
Ultravox is a multimodal model that can consume both speech and text as input (e.g., a text system prompt and voice user message).
The input to the model is given as a text prompt with a special `<|audio|>` pseudo-token, and the model processor will replace this magic token with embeddings derived from the input audio.
Using the merged embeddings as input, the model will then generate output text as usual.
In a future revision of Ultravox, we plan to expand the token vocabulary to support generation of semantic and acoustic audio tokens, which can then be fed to a vocoder to produce voice output.
No preference tuning has been applied to this revision of the model.
- **Developed by:** Fixie.ai
- **License:** MIT
### Model Sources
- **Repository:** https://ultravox.ai
- **Demo:** See repo
## Uses
Voice agents, speech-to-speech translation, analysis of spoken audio
## Training Details
The model uses a pre-trained [Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B) backbone as well as the encoder part of [Whisper-small](https://huggingface.co/openai/whisper-small).
The multi-modal projector is first trained (while keeping backbones frozen) in stage 1 and then in stage 2, Llama3 is also fine-tuned using LoRA.
### Training Data
Training dataset is a mix of ASR datasets (Gigaspeech), instruction-following and QA data (AnyInstruct and an extended version of BoolQ), and conversational data (SODA with alternative generations for last two turns).
### Training Procedure
Supervised speech to audio finetuning. For more info, see [training code in Ultravox repo](https://github.com/fixie-ai/ultravox/blob/main/ultravox/training/train.py).
#### Training Hyperparameters
- **Training regime:** BF16 mixed precision training
- **Hardward used:** 8x A100-40GB GPUs
- **LLM LoRA Rank:** 64
#### Speeds, Sizes, Times
The current version of Ultravox, when invoked with audio content, has a time-to-first-token (TTFT) of approximately 200ms, and a tokens-per-second rate of ~50-100 when using an A100-40GB GPU, all using a Llama 3 8B backbone.
Check out the audio tab on [TheFastest.ai](https://thefastest.ai/?m=audio) for daily benchmarks and a comparison with other existing models.
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary |