firqaaa commited on
Commit
ed5c33f
·
1 Parent(s): 056d53a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -3
README.md CHANGED
@@ -4,9 +4,9 @@ language:
4
  pipeline_tag: conversational
5
  ---
6
 
7
- ## How to Use
8
 
9
- 'python
10
  import torch
11
  import bitsandbytes as bnb
12
  from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
@@ -19,4 +19,47 @@ model = LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf",
19
  load_in_8bit=True,
20
  device_map="auto")
21
  # Load the LoRA model
22
- model = PeftModel.from_pretrained(model, peft_model_id)'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  pipeline_tag: conversational
5
  ---
6
 
7
+ # How to Use
8
 
9
+ ```python
10
  import torch
11
  import bitsandbytes as bnb
12
  from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
 
19
  load_in_8bit=True,
20
  device_map="auto")
21
  # Load the LoRA model
22
+ model = PeftModel.from_pretrained(model, peft_model_id)
23
+
24
+ def generate_prompt(instruction, input=None):
25
+ if input:
26
+ return f"""Berikut ini adalah petunjuk yang menjelaskan tugas, serta masukan yang menyediakan konteks tambahan. Tulis balasan yang melengkapi permintaan dengan tepat.
27
+
28
+ Petunjuk:
29
+ {instruction}
30
+
31
+ Masukan:
32
+ {input}
33
+
34
+ Output:"""
35
+
36
+ else:
37
+ return f"""Berikut ini terdapat panduan yang menjelaskan tugas. Mohon tuliskan balasan yang melengkapi permintaan dengan tepat.
38
+
39
+ Panduan:
40
+ {instruction}
41
+
42
+ Output:"""
43
+
44
+ generation_config = GenerationConfig(
45
+ temperature=0.2,
46
+ top_p=0.75,
47
+ num_beams=8
48
+ )
49
+
50
+ def evaluate(instruction, input=None):
51
+ prompt = generate_prompt(instruction, input)
52
+ inputs = tokenizer(prompt, return_tensors="pt")
53
+ input_ids = inputs["input_ids"].cuda()
54
+ generation_output = model.generate(
55
+ input_ids=input_ids,
56
+ generation_config=generation_config,
57
+ return_dict_in_generate=True,
58
+ output_scores=True,
59
+ max_new_tokens=256
60
+ )
61
+ for s in generation_output.sequences:
62
+ output = tokenizer.decode(s)
63
+ print("Output:", output.split("Output:")[1].strip())
64
+ ```
65
+