File size: 5,356 Bytes
15178b4 1cbed95 f5d0b6a 15178b4 cbe70e2 15178b4 9a4cc35 15178b4 6e3c81c 15178b4 6384fb1 15178b4 6384fb1 f2aab0f 6384fb1 15178b4 f5d0b6a 15178b4 6384fb1 15178b4 b0702d8 15178b4 f5d0b6a 7954e12 20dad94 15178b4 f5d0b6a b0702d8 940afaa e59cc56 b0702d8 f5d0b6a 4079e99 f5d0b6a 4079e99 487cbc0 f5d0b6a b0702d8 1cbed95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: llama3
tags:
- function-calling
---
# FireFunction V2: Fireworks Function Calling Model
[**Try on Fireworks**](https://fireworks.ai/models/fireworks/firefunction-v2) | [**API Docs**](https://readme.fireworks.ai/docs/function-calling) | [**Demo App**](https://functional-chat.vercel.app/) | [**Discord**](https://discord.gg/mMqQxvFD9A)
<img src="https://cdn-uploads.huggingface.co/production/uploads/64b6f3a72f5a966b9722de88/nJNtxLzWswBDKK1iOZblb.png" alt="firefunction" width="400"/>
FireFunction is a state-of-the-art function calling model with a commercially viable license. View detailed info in our [announcement blog](https://fireworks.ai/blog/firefunction-v2-launch-post). Key info and highlights:
**Comparison with other models:**
- Competitive with GPT-4o at function-calling, scoring 0.81 vs 0.80 on a medley of public evaluations
- Trained on Llama 3 and retains Llama 3’s conversation and instruction-following capabilities, scoring 0.84 vs Llama 3’s 0.89 on MT bench
- Significant quality improvements over FireFunction v1 across the broad range of metrics
**General info:**
🐾 Successor of the [FireFunction](https://fireworks.ai/models/fireworks/firefunction-v1) model
🔆 Support of parallel function calling (unlike FireFunction v1) and good instruction following
💡 Hosted on the [Fireworks](https://fireworks.ai/models/fireworks/firefunction-v2) platform at < 10% of the cost of GPT 4o and 2x the speed
## Intended Use and Limitations
### Supported usecases
The model was tuned to perfom well on a range of usecases including:
* general instruction following
* multi-turn chat mixing vanilla messages with function calls
* single- and parallel function calling
* up to 20 function specs supported at once
* structured information extraction
The model has an 8k context window, like Llama 3
### Out-of-Scope Use
The model was not optimized for the following use cases:
* 100+ function specs
* nested function calling
## Metrics
| Benchmark | Firefunction v1 | Firefunction v2 | Llama 3 70b Instruct | Gpt-4o |
|:-----------------------------------|:----------------|:----------------|:---------------------|:-------|
| Gorilla simple | 0.91 | 0.94 | 0.925 | 0.88 |
| Gorilla multiple_function | 0.92 | 0.91 | 0.86 | 0.91 |
| Gorilla parallel_function | 0 | 0.9 | 0.86 | 0.89 |
| Gorilla parallel_multiple_function | 0 | 0.8 | 0.615 | 0.72 |
| Nexus parallel | 0.38 | 0.53 | 0.3 | 0.47 |
| Mtbench | 0.73 | 0.84 | 0.89 | 0.93 |
| Average | 0.49 | 0.82 | 0.74 | 0.8 |
## Example Usage
See [documentation](https://readme.fireworks.ai/docs/function-calling) for more detail.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
from datetime import datetime
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("fireworks-ai/firefunction-v2", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("fireworks-ai/firefunction-v2")
function_spec = [
{
"name": "get_stock_price",
"description": "Get the current stock price",
"parameters": {
"type": "object",
"properties": {
"symbol": {
"type": "string",
"description": "The stock symbol, e.g. AAPL, GOOG"
}
},
"required": [
"symbol"
]
}
},
{
"name": "check_word_anagram",
"description": "Check if two words are anagrams of each other",
"parameters": {
"type": "object",
"properties": {
"word1": {
"type": "string",
"description": "The first word"
},
"word2": {
"type": "string",
"description": "The second word"
}
},
"required": [
"word1",
"word2"
]
}
}
]
functions = json.dumps(function_spec, indent=4)
messages = [
{'role': 'system', 'content': 'You are a helpful assistant with access to functions. Use them if required.'},
{'role': 'user', 'content': 'Hi, can you tell me the current stock price of google and netflix?'}
]
now = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
model_inputs = tokenizer.apply_chat_template(messages, functions=functions, datetime=now, return_tensors="pt").to(model.device)
generated_ids = model.generate(model_inputs, max_new_tokens=128)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## Resources
* [Fireworks discord with function calling channel](https://discord.gg/mMqQxvFD9A)
* [Documentation](https://readme.fireworks.ai/docs/function-calling)
* [Demo app](https://functional-chat.vercel.app/)
* [Try in Fireworks prompt playground UI](https://fireworks.ai/models/fireworks/firefunction-v2) |