File size: 4,641 Bytes
15178b4
f5d0b6a
 
 
15178b4
 
f5d0b6a
15178b4
9a4cc35
15178b4
f5d0b6a
15178b4
f5d0b6a
15178b4
f5d0b6a
15178b4
f5d0b6a
15178b4
f5d0b6a
15178b4
b0702d8
15178b4
f5d0b6a
 
 
 
 
 
 
15178b4
 
f5d0b6a
 
 
 
b0702d8
 
940afaa
e59cc56
b0702d8
 
 
 
 
 
 
 
f5d0b6a
 
 
 
 
 
 
4079e99
f5d0b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4079e99
 
 
f5d0b6a
 
 
 
 
 
b0702d8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
license: apache-2.0
tags:
- function-calling
---

# Fireworks Function Calling (FireFunction) Model V2

<img src="https://cdn-uploads.huggingface.co/production/uploads/64b6f3a72f5a966b9722de88/nJNtxLzWswBDKK1iOZblb.png" alt="firefunction" width="400"/>

FireFunction is a state-of-the-art function calling model with a commercially viable license. Key info and highlights:

๐Ÿพ Successor of the [FireFunction](https://fireworks.ai/models/fireworks/firefunction-v2) model

๐Ÿ“ Signifficant quality improvements over FireFunction v1 across the broad range of metrics

๐Ÿ”† Support of parallel function calling (unlike FireFunction v1) and good instruction following

๐Ÿ’ก Hosted on the [Fireworks](https://fireworks.ai/models/fireworks/firefunction-v2) platform

## Intended Use and Limitations

### Supported usecases
The model was tuned to perfom well on a range of usecases including:
 * general instruction following
 * multi-turn chat mixing vanilla messages with function calls
 * single- and parallel function calling
 * up to 20 function specs supported at once
 * structured information extraction

### Out-of-Scope Use
The model was not optimized for the following use cases:
  * 100+ function specs
  * nested function calling

## Metrics

| Benchmark                          | Firefunction v1 | Firefunction v2 | Llama 3 70b Instruct | Gpt-4o |
|:-----------------------------------|:----------------|:----------------|:---------------------|:-------|
| Gorilla simple                     | 0.91            | 0.94            | 0.925                | 0.88   |
| Gorilla multiple_function          | 0.92            | 0.91            | 0.86                 | 0.91   |
| Gorilla parallel_function          | 0               | 0.9             | 0.86                 | 0.89   |
| Gorilla parallel_multiple_function | 0               | 0.8             | 0.615                | 0.72   |
| Nexus parallel                     | 0.38            | 0.53            | 0.3                  | 0.47   |
| Mtbench                            | 0.73            | 0.84            | 0.89                 | 0.93   |
| Average                            | 0.49            | 0.82            | 0.74                 | 0.8    |

## Example Usage

See [documentation](https://readme.fireworks.ai/docs/function-calling) for more detail.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
from datetime import datetime

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("fireworks-ai/firefunction-v2", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("fireworks-ai/firefunction-v2")

function_spec = [
    {
        "name": "get_stock_price",
        "description": "Get the current stock price",
        "parameters": {
            "type": "object",
            "properties": {
                "symbol": {
                    "type": "string",
                    "description": "The stock symbol, e.g. AAPL, GOOG"
                }
            },
            "required": [
                "symbol"
            ]
        }
    },
    {
        "name": "check_word_anagram",
        "description": "Check if two words are anagrams of each other",
        "parameters": {
            "type": "object",
            "properties": {
                "word1": {
                    "type": "string",
                    "description": "The first word"
                },
                "word2": {
                    "type": "string",
                    "description": "The second word"
                }
            },
            "required": [
                "word1",
                "word2"
            ]
        }
    }
]
functions = json.dumps(function_spec, indent=4)

messages = [
    {'role': 'functions', 'content': functions},
    {'role': 'system', 'content': 'You are a helpful assistant with access to functions. Use them if required.'},
    {'role': 'user', 'content': 'Hi, can you tell me the current stock price of google and netflix?'}
]

now = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

model_inputs = tokenizer.apply_chat_template(messages, datetime=now, return_tensors="pt").to(model.device)

generated_ids = model.generate(model_inputs, max_new_tokens=128)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

## Resources
* [Fireworks discord with function calling channel](https://discord.gg/mMqQxvFD9A)
* [Documentation](https://readme.fireworks.ai/docs/function-calling)
* [Demo app](https://functional-chat.vercel.app/)
* [Try in Fireworks prompt playground UI](https://fireworks.ai/models/fireworks/firefunction-v2)