finnstrom3693
commited on
Commit
•
b5e64c5
1
Parent(s):
b71846a
Create tokenizer_make2.py
Browse files- tokenizer_make2.py +80 -0
tokenizer_make2.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertTokenizerFast
|
2 |
+
import os
|
3 |
+
import tensorflow as tf
|
4 |
+
|
5 |
+
class MiniSunTokenizer:
|
6 |
+
def __init__(self, vocab_file=None):
|
7 |
+
if vocab_file:
|
8 |
+
self.tokenizer = BertTokenizerFast(vocab_file=vocab_file, do_lower_case=False)
|
9 |
+
else:
|
10 |
+
self.tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
11 |
+
|
12 |
+
# Define special tokens
|
13 |
+
self.pad_token = '[PAD]'
|
14 |
+
self.unk_token = '[UNK]'
|
15 |
+
self.cls_token = '[CLS]'
|
16 |
+
self.sep_token = '[SEP]'
|
17 |
+
self.mask_token = '[MASK]'
|
18 |
+
self.eos_token = '[EOS]'
|
19 |
+
|
20 |
+
def encode(self, text, max_length=512, padding=True, truncation=True):
|
21 |
+
"""
|
22 |
+
Encodes the input text (string or batch of strings).
|
23 |
+
It automatically detects if the input is a batch or a single sentence.
|
24 |
+
"""
|
25 |
+
if isinstance(text, list): # If batch of texts, call batch_encode_plus
|
26 |
+
return self._encode_batch(text, max_length, padding, truncation)
|
27 |
+
else: # Single text input
|
28 |
+
return self._encode_single(text, max_length, padding, truncation)
|
29 |
+
|
30 |
+
def _encode_single(self, text, max_length=512, padding=True, truncation=True):
|
31 |
+
# Encode a single string
|
32 |
+
encoded = self.tokenizer.encode_plus(
|
33 |
+
text,
|
34 |
+
add_special_tokens=True,
|
35 |
+
max_length=max_length,
|
36 |
+
padding='max_length' if padding else False,
|
37 |
+
truncation=truncation,
|
38 |
+
return_attention_mask=True,
|
39 |
+
return_tensors='tf'
|
40 |
+
)
|
41 |
+
return {
|
42 |
+
'input_ids': encoded['input_ids'].numpy().tolist(),
|
43 |
+
'attention_mask': encoded['attention_mask'].numpy().tolist()
|
44 |
+
}
|
45 |
+
|
46 |
+
def _encode_batch(self, texts, max_length=512, padding=True, truncation=True):
|
47 |
+
# Encode a batch of strings
|
48 |
+
encoded_batch = self.tokenizer.batch_encode_plus(
|
49 |
+
texts,
|
50 |
+
add_special_tokens=True,
|
51 |
+
max_length=max_length,
|
52 |
+
padding='max_length' if padding else False,
|
53 |
+
truncation=truncation,
|
54 |
+
return_attention_mask=True,
|
55 |
+
return_tensors='tf'
|
56 |
+
)
|
57 |
+
return {
|
58 |
+
'input_ids': encoded_batch['input_ids'].numpy().tolist(),
|
59 |
+
'attention_mask': encoded_batch['attention_mask'].numpy().tolist()
|
60 |
+
}
|
61 |
+
|
62 |
+
def decode(self, token_ids):
|
63 |
+
# Decodes token IDs back into text
|
64 |
+
return self.tokenizer.decode(token_ids, skip_special_tokens=True)
|
65 |
+
|
66 |
+
def save_pretrained(self, save_directory):
|
67 |
+
# Save the tokenizer in Hugging Face format
|
68 |
+
os.makedirs(save_directory, exist_ok=True)
|
69 |
+
self.tokenizer.save_pretrained(save_directory)
|
70 |
+
|
71 |
+
def __call__(self, text, *args, **kwargs):
|
72 |
+
"""
|
73 |
+
This allows the tokenizer object to be called directly like `tokenizer(text)`.
|
74 |
+
It will automatically detect if the input is a batch or a single sentence.
|
75 |
+
"""
|
76 |
+
return self.encode(text, *args, **kwargs)
|
77 |
+
|
78 |
+
|
79 |
+
# Example usage of the tokenizer
|
80 |
+
tokenizer = MiniSunTokenizer()
|