fgiauna commited on
Commit
3616b8c
·
1 Parent(s): 33a4266

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: peft-prefix-jul
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # peft-prefix-jul
14
+
15
+ This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0834
18
+ - Loc: {'precision': 0.7203389830508474, 'recall': 0.7870370370370371, 'f1': 0.752212389380531, 'number': 216}
19
+ - Misc: {'precision': 0.6923076923076923, 'recall': 0.45, 'f1': 0.5454545454545455, 'number': 40}
20
+ - Org: {'precision': 0.8309178743961353, 'recall': 0.86, 'f1': 0.8452088452088452, 'number': 200}
21
+ - Per: {'precision': 0.819672131147541, 'recall': 0.7653061224489796, 'f1': 0.7915567282321899, 'number': 196}
22
+ - Overall Precision: 0.7822
23
+ - Overall Recall: 0.7822
24
+ - Overall F1: 0.7822
25
+ - Overall Accuracy: 0.9827
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 0.0002
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 10
51
+
52
+ ### Training results
53
+
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.26.1
59
+ - Pytorch 2.0.0+cu118
60
+ - Datasets 2.12.0
61
+ - Tokenizers 0.13.3