File size: 2,377 Bytes
7f9957e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: biobert_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biobert_model
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9645
- Accuracy: 0.8711
- F1: 0.8475
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 334 | 0.6463 | 0.6897 | 0.7129 |
| 0.4503 | 2.0 | 668 | 0.3590 | 0.8651 | 0.8269 |
| 0.2715 | 3.0 | 1002 | 0.4549 | 0.8711 | 0.8252 |
| 0.2715 | 4.0 | 1336 | 0.6012 | 0.8681 | 0.8434 |
| 0.1335 | 5.0 | 1670 | 0.6307 | 0.8576 | 0.8313 |
| 0.0746 | 6.0 | 2004 | 0.7658 | 0.8636 | 0.8366 |
| 0.0746 | 7.0 | 2338 | 0.8658 | 0.8666 | 0.8436 |
| 0.0307 | 8.0 | 2672 | 0.8312 | 0.8711 | 0.8453 |
| 0.0148 | 9.0 | 3006 | 0.8922 | 0.8651 | 0.8421 |
| 0.0148 | 10.0 | 3340 | 0.8761 | 0.8726 | 0.8490 |
| 0.0128 | 11.0 | 3674 | 0.9329 | 0.8681 | 0.8462 |
| 0.0105 | 12.0 | 4008 | 0.9512 | 0.8666 | 0.8441 |
| 0.0105 | 13.0 | 4342 | 0.9553 | 0.8711 | 0.8475 |
| 0.0069 | 14.0 | 4676 | 0.9731 | 0.8681 | 0.8445 |
| 0.0046 | 15.0 | 5010 | 0.9645 | 0.8711 | 0.8475 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|