File size: 2,177 Bytes
c7afc64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: albert_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# albert_model

This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8674
- Accuracy: 0.9010

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 334  | 0.3206          | 0.8666   |
| 0.4327        | 2.0   | 668  | 0.4502          | 0.8906   |
| 0.3178        | 3.0   | 1002 | 0.4517          | 0.8951   |
| 0.3178        | 4.0   | 1336 | 0.5688          | 0.9025   |
| 0.1649        | 5.0   | 1670 | 0.6359          | 0.8996   |
| 0.0707        | 6.0   | 2004 | 0.7573          | 0.8906   |
| 0.0707        | 7.0   | 2338 | 0.8200          | 0.8906   |
| 0.0216        | 8.0   | 2672 | 0.7581          | 0.9010   |
| 0.0168        | 9.0   | 3006 | 0.7530          | 0.9130   |
| 0.0168        | 10.0  | 3340 | 0.8194          | 0.9055   |
| 0.0075        | 11.0  | 3674 | 0.8633          | 0.9010   |
| 0.0037        | 12.0  | 4008 | 0.8079          | 0.9145   |
| 0.0037        | 13.0  | 4342 | 0.8283          | 0.9115   |
| 0.0018        | 14.0  | 4676 | 0.8508          | 0.9055   |
| 0.0003        | 15.0  | 5010 | 0.8674          | 0.9010   |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3