felipehsilveira commited on
Commit
8612460
1 Parent(s): 39f7bca

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,814 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:6300
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: The sales contracts for Israel contain formulas that generally
35
+ reflect an initial base price subject to price indexation, Brent-linked or other,
36
+ over the life of the contract.
37
+ sentences:
38
+ - What was the change in HP's net deferred tax assets from 2022 to 2023?
39
+ - What are the pricing mechanisms for crude oil sales contracts in Israel?
40
+ - What was the total net income tax benefit HP received related to foreign tax audit
41
+ matters?
42
+ - source_sentence: The FCA imposes severe penalties for the knowing and improper retention
43
+ of overpayments from government programs. In addition, the defendant must follow
44
+ certain notification and repayment processes within 60 days of identifying and
45
+ quantifying an overpayment.
46
+ sentences:
47
+ - What does Note 21 pertain to in this report?
48
+ - What types of penalties does the FCA impose for the knowing and improper retention
49
+ of overpayments from government payors?
50
+ - What impact did discrete tax items have on the tax provision in 2023 compared
51
+ to 2022?
52
+ - source_sentence: The expected long-term rate of return is evaluated on an annual
53
+ basis. We consider a number of factors when setting assumptions with respect to
54
+ the long-term rate of return, including current and expected asset allocation
55
+ and historical and expected returns on the plan asset categories. Actual asset
56
+ allocations are regularly reviewed and periodically rebalanced to the targeted
57
+ allocations when considered appropriate.
58
+ sentences:
59
+ - How is the expected long-term rate of return on plan assets determined?
60
+ - What is the accumulated benefit obligation for AT&T's pension plans as of December
61
+ 31, 2023?
62
+ - What is the management philosophy of Johnson & Johnson known as?
63
+ - source_sentence: The functional currency of our foreign entities is the currency
64
+ of the primary economic environment in which the entity operates.
65
+ sentences:
66
+ - By what percent did Other Income (Expense) change in 2023 compared to 2022?
67
+ - What are the Canadian class actions against Equifax seeking in relation to the
68
+ 2017 cybersecurity incident?
69
+ - What is the functional currency for a company's foreign entities?
70
+ - source_sentence: Our products compete with other commercially available products
71
+ based primarily on efficacy, safety, tolerability, acceptance by doctors, ease
72
+ of patient compliance, ease of use, price, insurance and other reimbursement coverage,
73
+ distribution and marketing.
74
+ sentences:
75
+ - What are the main factors influencing competition for the company's products?
76
+ - What was the impact of restructuring charges in 2022 on the company and what changes
77
+ occurred in 2023?
78
+ - What are the penalties for non-compliance with Brazil's data protection laws?
79
+ model-index:
80
+ - name: BGE base Financial Matryoshka
81
+ results:
82
+ - task:
83
+ type: information-retrieval
84
+ name: Information Retrieval
85
+ dataset:
86
+ name: dim 768
87
+ type: dim_768
88
+ metrics:
89
+ - type: cosine_accuracy@1
90
+ value: 0.6985714285714286
91
+ name: Cosine Accuracy@1
92
+ - type: cosine_accuracy@3
93
+ value: 0.83
94
+ name: Cosine Accuracy@3
95
+ - type: cosine_accuracy@5
96
+ value: 0.88
97
+ name: Cosine Accuracy@5
98
+ - type: cosine_accuracy@10
99
+ value: 0.9257142857142857
100
+ name: Cosine Accuracy@10
101
+ - type: cosine_precision@1
102
+ value: 0.6985714285714286
103
+ name: Cosine Precision@1
104
+ - type: cosine_precision@3
105
+ value: 0.27666666666666667
106
+ name: Cosine Precision@3
107
+ - type: cosine_precision@5
108
+ value: 0.176
109
+ name: Cosine Precision@5
110
+ - type: cosine_precision@10
111
+ value: 0.09257142857142854
112
+ name: Cosine Precision@10
113
+ - type: cosine_recall@1
114
+ value: 0.6985714285714286
115
+ name: Cosine Recall@1
116
+ - type: cosine_recall@3
117
+ value: 0.83
118
+ name: Cosine Recall@3
119
+ - type: cosine_recall@5
120
+ value: 0.88
121
+ name: Cosine Recall@5
122
+ - type: cosine_recall@10
123
+ value: 0.9257142857142857
124
+ name: Cosine Recall@10
125
+ - type: cosine_ndcg@10
126
+ value: 0.8141629079228132
127
+ name: Cosine Ndcg@10
128
+ - type: cosine_mrr@10
129
+ value: 0.7782318594104309
130
+ name: Cosine Mrr@10
131
+ - type: cosine_map@100
132
+ value: 0.7807867705374557
133
+ name: Cosine Map@100
134
+ - task:
135
+ type: information-retrieval
136
+ name: Information Retrieval
137
+ dataset:
138
+ name: dim 512
139
+ type: dim_512
140
+ metrics:
141
+ - type: cosine_accuracy@1
142
+ value: 0.7014285714285714
143
+ name: Cosine Accuracy@1
144
+ - type: cosine_accuracy@3
145
+ value: 0.8328571428571429
146
+ name: Cosine Accuracy@3
147
+ - type: cosine_accuracy@5
148
+ value: 0.8857142857142857
149
+ name: Cosine Accuracy@5
150
+ - type: cosine_accuracy@10
151
+ value: 0.9228571428571428
152
+ name: Cosine Accuracy@10
153
+ - type: cosine_precision@1
154
+ value: 0.7014285714285714
155
+ name: Cosine Precision@1
156
+ - type: cosine_precision@3
157
+ value: 0.2776190476190476
158
+ name: Cosine Precision@3
159
+ - type: cosine_precision@5
160
+ value: 0.17714285714285713
161
+ name: Cosine Precision@5
162
+ - type: cosine_precision@10
163
+ value: 0.09228571428571428
164
+ name: Cosine Precision@10
165
+ - type: cosine_recall@1
166
+ value: 0.7014285714285714
167
+ name: Cosine Recall@1
168
+ - type: cosine_recall@3
169
+ value: 0.8328571428571429
170
+ name: Cosine Recall@3
171
+ - type: cosine_recall@5
172
+ value: 0.8857142857142857
173
+ name: Cosine Recall@5
174
+ - type: cosine_recall@10
175
+ value: 0.9228571428571428
176
+ name: Cosine Recall@10
177
+ - type: cosine_ndcg@10
178
+ value: 0.8133531244983723
179
+ name: Cosine Ndcg@10
180
+ - type: cosine_mrr@10
181
+ value: 0.7781366213151925
182
+ name: Cosine Mrr@10
183
+ - type: cosine_map@100
184
+ value: 0.7808747462599953
185
+ name: Cosine Map@100
186
+ - task:
187
+ type: information-retrieval
188
+ name: Information Retrieval
189
+ dataset:
190
+ name: dim 256
191
+ type: dim_256
192
+ metrics:
193
+ - type: cosine_accuracy@1
194
+ value: 0.7
195
+ name: Cosine Accuracy@1
196
+ - type: cosine_accuracy@3
197
+ value: 0.84
198
+ name: Cosine Accuracy@3
199
+ - type: cosine_accuracy@5
200
+ value: 0.8714285714285714
201
+ name: Cosine Accuracy@5
202
+ - type: cosine_accuracy@10
203
+ value: 0.9085714285714286
204
+ name: Cosine Accuracy@10
205
+ - type: cosine_precision@1
206
+ value: 0.7
207
+ name: Cosine Precision@1
208
+ - type: cosine_precision@3
209
+ value: 0.28
210
+ name: Cosine Precision@3
211
+ - type: cosine_precision@5
212
+ value: 0.17428571428571427
213
+ name: Cosine Precision@5
214
+ - type: cosine_precision@10
215
+ value: 0.09085714285714284
216
+ name: Cosine Precision@10
217
+ - type: cosine_recall@1
218
+ value: 0.7
219
+ name: Cosine Recall@1
220
+ - type: cosine_recall@3
221
+ value: 0.84
222
+ name: Cosine Recall@3
223
+ - type: cosine_recall@5
224
+ value: 0.8714285714285714
225
+ name: Cosine Recall@5
226
+ - type: cosine_recall@10
227
+ value: 0.9085714285714286
228
+ name: Cosine Recall@10
229
+ - type: cosine_ndcg@10
230
+ value: 0.8077154994184018
231
+ name: Cosine Ndcg@10
232
+ - type: cosine_mrr@10
233
+ value: 0.7749937641723353
234
+ name: Cosine Mrr@10
235
+ - type: cosine_map@100
236
+ value: 0.7785241448057054
237
+ name: Cosine Map@100
238
+ - task:
239
+ type: information-retrieval
240
+ name: Information Retrieval
241
+ dataset:
242
+ name: dim 128
243
+ type: dim_128
244
+ metrics:
245
+ - type: cosine_accuracy@1
246
+ value: 0.6942857142857143
247
+ name: Cosine Accuracy@1
248
+ - type: cosine_accuracy@3
249
+ value: 0.82
250
+ name: Cosine Accuracy@3
251
+ - type: cosine_accuracy@5
252
+ value: 0.8557142857142858
253
+ name: Cosine Accuracy@5
254
+ - type: cosine_accuracy@10
255
+ value: 0.9028571428571428
256
+ name: Cosine Accuracy@10
257
+ - type: cosine_precision@1
258
+ value: 0.6942857142857143
259
+ name: Cosine Precision@1
260
+ - type: cosine_precision@3
261
+ value: 0.2733333333333333
262
+ name: Cosine Precision@3
263
+ - type: cosine_precision@5
264
+ value: 0.17114285714285712
265
+ name: Cosine Precision@5
266
+ - type: cosine_precision@10
267
+ value: 0.09028571428571427
268
+ name: Cosine Precision@10
269
+ - type: cosine_recall@1
270
+ value: 0.6942857142857143
271
+ name: Cosine Recall@1
272
+ - type: cosine_recall@3
273
+ value: 0.82
274
+ name: Cosine Recall@3
275
+ - type: cosine_recall@5
276
+ value: 0.8557142857142858
277
+ name: Cosine Recall@5
278
+ - type: cosine_recall@10
279
+ value: 0.9028571428571428
280
+ name: Cosine Recall@10
281
+ - type: cosine_ndcg@10
282
+ value: 0.7990640908671799
283
+ name: Cosine Ndcg@10
284
+ - type: cosine_mrr@10
285
+ value: 0.7658554421768706
286
+ name: Cosine Mrr@10
287
+ - type: cosine_map@100
288
+ value: 0.7697199109144424
289
+ name: Cosine Map@100
290
+ - task:
291
+ type: information-retrieval
292
+ name: Information Retrieval
293
+ dataset:
294
+ name: dim 64
295
+ type: dim_64
296
+ metrics:
297
+ - type: cosine_accuracy@1
298
+ value: 0.6614285714285715
299
+ name: Cosine Accuracy@1
300
+ - type: cosine_accuracy@3
301
+ value: 0.7842857142857143
302
+ name: Cosine Accuracy@3
303
+ - type: cosine_accuracy@5
304
+ value: 0.8271428571428572
305
+ name: Cosine Accuracy@5
306
+ - type: cosine_accuracy@10
307
+ value: 0.8885714285714286
308
+ name: Cosine Accuracy@10
309
+ - type: cosine_precision@1
310
+ value: 0.6614285714285715
311
+ name: Cosine Precision@1
312
+ - type: cosine_precision@3
313
+ value: 0.26142857142857145
314
+ name: Cosine Precision@3
315
+ - type: cosine_precision@5
316
+ value: 0.1654285714285714
317
+ name: Cosine Precision@5
318
+ - type: cosine_precision@10
319
+ value: 0.08885714285714284
320
+ name: Cosine Precision@10
321
+ - type: cosine_recall@1
322
+ value: 0.6614285714285715
323
+ name: Cosine Recall@1
324
+ - type: cosine_recall@3
325
+ value: 0.7842857142857143
326
+ name: Cosine Recall@3
327
+ - type: cosine_recall@5
328
+ value: 0.8271428571428572
329
+ name: Cosine Recall@5
330
+ - type: cosine_recall@10
331
+ value: 0.8885714285714286
332
+ name: Cosine Recall@10
333
+ - type: cosine_ndcg@10
334
+ value: 0.7730930913085324
335
+ name: Cosine Ndcg@10
336
+ - type: cosine_mrr@10
337
+ value: 0.7365589569160996
338
+ name: Cosine Mrr@10
339
+ - type: cosine_map@100
340
+ value: 0.7404183138657333
341
+ name: Cosine Map@100
342
+ ---
343
+
344
+ # BGE base Financial Matryoshka
345
+
346
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
347
+
348
+ ## Model Details
349
+
350
+ ### Model Description
351
+ - **Model Type:** Sentence Transformer
352
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
353
+ - **Maximum Sequence Length:** 512 tokens
354
+ - **Output Dimensionality:** 768 tokens
355
+ - **Similarity Function:** Cosine Similarity
356
+ <!-- - **Training Dataset:** Unknown -->
357
+ - **Language:** en
358
+ - **License:** apache-2.0
359
+
360
+ ### Model Sources
361
+
362
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
363
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
364
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
365
+
366
+ ### Full Model Architecture
367
+
368
+ ```
369
+ SentenceTransformer(
370
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
371
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
372
+ (2): Normalize()
373
+ )
374
+ ```
375
+
376
+ ## Usage
377
+
378
+ ### Direct Usage (Sentence Transformers)
379
+
380
+ First install the Sentence Transformers library:
381
+
382
+ ```bash
383
+ pip install -U sentence-transformers
384
+ ```
385
+
386
+ Then you can load this model and run inference.
387
+ ```python
388
+ from sentence_transformers import SentenceTransformer
389
+
390
+ # Download from the 🤗 Hub
391
+ model = SentenceTransformer("felipehsilveira/bge-base-financial-matryoshka")
392
+ # Run inference
393
+ sentences = [
394
+ 'Our products compete with other commercially available products based primarily on efficacy, safety, tolerability, acceptance by doctors, ease of patient compliance, ease of use, price, insurance and other reimbursement coverage, distribution and marketing.',
395
+ "What are the main factors influencing competition for the company's products?",
396
+ 'What was the impact of restructuring charges in 2022 on the company and what changes occurred in 2023?',
397
+ ]
398
+ embeddings = model.encode(sentences)
399
+ print(embeddings.shape)
400
+ # [3, 768]
401
+
402
+ # Get the similarity scores for the embeddings
403
+ similarities = model.similarity(embeddings, embeddings)
404
+ print(similarities.shape)
405
+ # [3, 3]
406
+ ```
407
+
408
+ <!--
409
+ ### Direct Usage (Transformers)
410
+
411
+ <details><summary>Click to see the direct usage in Transformers</summary>
412
+
413
+ </details>
414
+ -->
415
+
416
+ <!--
417
+ ### Downstream Usage (Sentence Transformers)
418
+
419
+ You can finetune this model on your own dataset.
420
+
421
+ <details><summary>Click to expand</summary>
422
+
423
+ </details>
424
+ -->
425
+
426
+ <!--
427
+ ### Out-of-Scope Use
428
+
429
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
430
+ -->
431
+
432
+ ## Evaluation
433
+
434
+ ### Metrics
435
+
436
+ #### Information Retrieval
437
+ * Dataset: `dim_768`
438
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
439
+
440
+ | Metric | Value |
441
+ |:--------------------|:-----------|
442
+ | cosine_accuracy@1 | 0.6986 |
443
+ | cosine_accuracy@3 | 0.83 |
444
+ | cosine_accuracy@5 | 0.88 |
445
+ | cosine_accuracy@10 | 0.9257 |
446
+ | cosine_precision@1 | 0.6986 |
447
+ | cosine_precision@3 | 0.2767 |
448
+ | cosine_precision@5 | 0.176 |
449
+ | cosine_precision@10 | 0.0926 |
450
+ | cosine_recall@1 | 0.6986 |
451
+ | cosine_recall@3 | 0.83 |
452
+ | cosine_recall@5 | 0.88 |
453
+ | cosine_recall@10 | 0.9257 |
454
+ | cosine_ndcg@10 | 0.8142 |
455
+ | cosine_mrr@10 | 0.7782 |
456
+ | **cosine_map@100** | **0.7808** |
457
+
458
+ #### Information Retrieval
459
+ * Dataset: `dim_512`
460
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
461
+
462
+ | Metric | Value |
463
+ |:--------------------|:-----------|
464
+ | cosine_accuracy@1 | 0.7014 |
465
+ | cosine_accuracy@3 | 0.8329 |
466
+ | cosine_accuracy@5 | 0.8857 |
467
+ | cosine_accuracy@10 | 0.9229 |
468
+ | cosine_precision@1 | 0.7014 |
469
+ | cosine_precision@3 | 0.2776 |
470
+ | cosine_precision@5 | 0.1771 |
471
+ | cosine_precision@10 | 0.0923 |
472
+ | cosine_recall@1 | 0.7014 |
473
+ | cosine_recall@3 | 0.8329 |
474
+ | cosine_recall@5 | 0.8857 |
475
+ | cosine_recall@10 | 0.9229 |
476
+ | cosine_ndcg@10 | 0.8134 |
477
+ | cosine_mrr@10 | 0.7781 |
478
+ | **cosine_map@100** | **0.7809** |
479
+
480
+ #### Information Retrieval
481
+ * Dataset: `dim_256`
482
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
483
+
484
+ | Metric | Value |
485
+ |:--------------------|:-----------|
486
+ | cosine_accuracy@1 | 0.7 |
487
+ | cosine_accuracy@3 | 0.84 |
488
+ | cosine_accuracy@5 | 0.8714 |
489
+ | cosine_accuracy@10 | 0.9086 |
490
+ | cosine_precision@1 | 0.7 |
491
+ | cosine_precision@3 | 0.28 |
492
+ | cosine_precision@5 | 0.1743 |
493
+ | cosine_precision@10 | 0.0909 |
494
+ | cosine_recall@1 | 0.7 |
495
+ | cosine_recall@3 | 0.84 |
496
+ | cosine_recall@5 | 0.8714 |
497
+ | cosine_recall@10 | 0.9086 |
498
+ | cosine_ndcg@10 | 0.8077 |
499
+ | cosine_mrr@10 | 0.775 |
500
+ | **cosine_map@100** | **0.7785** |
501
+
502
+ #### Information Retrieval
503
+ * Dataset: `dim_128`
504
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.6943 |
509
+ | cosine_accuracy@3 | 0.82 |
510
+ | cosine_accuracy@5 | 0.8557 |
511
+ | cosine_accuracy@10 | 0.9029 |
512
+ | cosine_precision@1 | 0.6943 |
513
+ | cosine_precision@3 | 0.2733 |
514
+ | cosine_precision@5 | 0.1711 |
515
+ | cosine_precision@10 | 0.0903 |
516
+ | cosine_recall@1 | 0.6943 |
517
+ | cosine_recall@3 | 0.82 |
518
+ | cosine_recall@5 | 0.8557 |
519
+ | cosine_recall@10 | 0.9029 |
520
+ | cosine_ndcg@10 | 0.7991 |
521
+ | cosine_mrr@10 | 0.7659 |
522
+ | **cosine_map@100** | **0.7697** |
523
+
524
+ #### Information Retrieval
525
+ * Dataset: `dim_64`
526
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
527
+
528
+ | Metric | Value |
529
+ |:--------------------|:-----------|
530
+ | cosine_accuracy@1 | 0.6614 |
531
+ | cosine_accuracy@3 | 0.7843 |
532
+ | cosine_accuracy@5 | 0.8271 |
533
+ | cosine_accuracy@10 | 0.8886 |
534
+ | cosine_precision@1 | 0.6614 |
535
+ | cosine_precision@3 | 0.2614 |
536
+ | cosine_precision@5 | 0.1654 |
537
+ | cosine_precision@10 | 0.0889 |
538
+ | cosine_recall@1 | 0.6614 |
539
+ | cosine_recall@3 | 0.7843 |
540
+ | cosine_recall@5 | 0.8271 |
541
+ | cosine_recall@10 | 0.8886 |
542
+ | cosine_ndcg@10 | 0.7731 |
543
+ | cosine_mrr@10 | 0.7366 |
544
+ | **cosine_map@100** | **0.7404** |
545
+
546
+ <!--
547
+ ## Bias, Risks and Limitations
548
+
549
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
550
+ -->
551
+
552
+ <!--
553
+ ### Recommendations
554
+
555
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
556
+ -->
557
+
558
+ ## Training Details
559
+
560
+ ### Training Dataset
561
+
562
+ #### Unnamed Dataset
563
+
564
+
565
+ * Size: 6,300 training samples
566
+ * Columns: <code>positive</code> and <code>anchor</code>
567
+ * Approximate statistics based on the first 1000 samples:
568
+ | | positive | anchor |
569
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
570
+ | type | string | string |
571
+ | details | <ul><li>min: 6 tokens</li><li>mean: 45.44 tokens</li><li>max: 301 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.3 tokens</li><li>max: 51 tokens</li></ul> |
572
+ * Samples:
573
+ | positive | anchor |
574
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
575
+ | <code>The Centers for Medicare & Medicaid Services issued a final rule in October 2023 for the calendar year 2024, estimating a productivity-adjusted market basket increase of 2.1% in average reimbursement to ESRD facilities.</code> | <code>What is the projected impact on average reimbursement to ESRD facilities in 2024 due to the final rule issued by CMS?</code> |
576
+ | <code>Company Adjusted EBIT Margin is derived by dividing the Company adjusted EBIT by Company revenue, which is a non-GAAP measure useful for evaluating the company's operating results.</code> | <code>How is the Company Adjusted EBIT Margin calculated?</code> |
577
+ | <code>The provision for credit losses was $4 million for the year ended December 31, 202 serviLists of account holders responsible for and the state of the economy, our credit standards, our risk assessments, and the judgment of our employees responsible for granting credit.</code> | <code>What factors influence the provision for credit losses at Las Vegas Sands Corp.?</code> |
578
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
579
+ ```json
580
+ {
581
+ "loss": "MultipleNegativesRankingLoss",
582
+ "matryoshka_dims": [
583
+ 768,
584
+ 512,
585
+ 256,
586
+ 128,
587
+ 64
588
+ ],
589
+ "matryoshka_weights": [
590
+ 1,
591
+ 1,
592
+ 1,
593
+ 1,
594
+ 1
595
+ ],
596
+ "n_dims_per_step": -1
597
+ }
598
+ ```
599
+
600
+ ### Training Hyperparameters
601
+ #### Non-Default Hyperparameters
602
+
603
+ - `eval_strategy`: epoch
604
+ - `per_device_train_batch_size`: 32
605
+ - `per_device_eval_batch_size`: 16
606
+ - `gradient_accumulation_steps`: 16
607
+ - `learning_rate`: 2e-05
608
+ - `num_train_epochs`: 4
609
+ - `lr_scheduler_type`: cosine
610
+ - `warmup_ratio`: 0.1
611
+ - `bf16`: True
612
+ - `tf32`: True
613
+ - `load_best_model_at_end`: True
614
+ - `optim`: adamw_torch_fused
615
+ - `batch_sampler`: no_duplicates
616
+
617
+ #### All Hyperparameters
618
+ <details><summary>Click to expand</summary>
619
+
620
+ - `overwrite_output_dir`: False
621
+ - `do_predict`: False
622
+ - `eval_strategy`: epoch
623
+ - `prediction_loss_only`: True
624
+ - `per_device_train_batch_size`: 32
625
+ - `per_device_eval_batch_size`: 16
626
+ - `per_gpu_train_batch_size`: None
627
+ - `per_gpu_eval_batch_size`: None
628
+ - `gradient_accumulation_steps`: 16
629
+ - `eval_accumulation_steps`: None
630
+ - `torch_empty_cache_steps`: None
631
+ - `learning_rate`: 2e-05
632
+ - `weight_decay`: 0.0
633
+ - `adam_beta1`: 0.9
634
+ - `adam_beta2`: 0.999
635
+ - `adam_epsilon`: 1e-08
636
+ - `max_grad_norm`: 1.0
637
+ - `num_train_epochs`: 4
638
+ - `max_steps`: -1
639
+ - `lr_scheduler_type`: cosine
640
+ - `lr_scheduler_kwargs`: {}
641
+ - `warmup_ratio`: 0.1
642
+ - `warmup_steps`: 0
643
+ - `log_level`: passive
644
+ - `log_level_replica`: warning
645
+ - `log_on_each_node`: True
646
+ - `logging_nan_inf_filter`: True
647
+ - `save_safetensors`: True
648
+ - `save_on_each_node`: False
649
+ - `save_only_model`: False
650
+ - `restore_callback_states_from_checkpoint`: False
651
+ - `no_cuda`: False
652
+ - `use_cpu`: False
653
+ - `use_mps_device`: False
654
+ - `seed`: 42
655
+ - `data_seed`: None
656
+ - `jit_mode_eval`: False
657
+ - `use_ipex`: False
658
+ - `bf16`: True
659
+ - `fp16`: False
660
+ - `fp16_opt_level`: O1
661
+ - `half_precision_backend`: auto
662
+ - `bf16_full_eval`: False
663
+ - `fp16_full_eval`: False
664
+ - `tf32`: True
665
+ - `local_rank`: 0
666
+ - `ddp_backend`: None
667
+ - `tpu_num_cores`: None
668
+ - `tpu_metrics_debug`: False
669
+ - `debug`: []
670
+ - `dataloader_drop_last`: False
671
+ - `dataloader_num_workers`: 0
672
+ - `dataloader_prefetch_factor`: None
673
+ - `past_index`: -1
674
+ - `disable_tqdm`: False
675
+ - `remove_unused_columns`: True
676
+ - `label_names`: None
677
+ - `load_best_model_at_end`: True
678
+ - `ignore_data_skip`: False
679
+ - `fsdp`: []
680
+ - `fsdp_min_num_params`: 0
681
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
682
+ - `fsdp_transformer_layer_cls_to_wrap`: None
683
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
684
+ - `deepspeed`: None
685
+ - `label_smoothing_factor`: 0.0
686
+ - `optim`: adamw_torch_fused
687
+ - `optim_args`: None
688
+ - `adafactor`: False
689
+ - `group_by_length`: False
690
+ - `length_column_name`: length
691
+ - `ddp_find_unused_parameters`: None
692
+ - `ddp_bucket_cap_mb`: None
693
+ - `ddp_broadcast_buffers`: False
694
+ - `dataloader_pin_memory`: True
695
+ - `dataloader_persistent_workers`: False
696
+ - `skip_memory_metrics`: True
697
+ - `use_legacy_prediction_loop`: False
698
+ - `push_to_hub`: False
699
+ - `resume_from_checkpoint`: None
700
+ - `hub_model_id`: None
701
+ - `hub_strategy`: every_save
702
+ - `hub_private_repo`: False
703
+ - `hub_always_push`: False
704
+ - `gradient_checkpointing`: False
705
+ - `gradient_checkpointing_kwargs`: None
706
+ - `include_inputs_for_metrics`: False
707
+ - `eval_do_concat_batches`: True
708
+ - `fp16_backend`: auto
709
+ - `push_to_hub_model_id`: None
710
+ - `push_to_hub_organization`: None
711
+ - `mp_parameters`:
712
+ - `auto_find_batch_size`: False
713
+ - `full_determinism`: False
714
+ - `torchdynamo`: None
715
+ - `ray_scope`: last
716
+ - `ddp_timeout`: 1800
717
+ - `torch_compile`: False
718
+ - `torch_compile_backend`: None
719
+ - `torch_compile_mode`: None
720
+ - `dispatch_batches`: None
721
+ - `split_batches`: None
722
+ - `include_tokens_per_second`: False
723
+ - `include_num_input_tokens_seen`: False
724
+ - `neftune_noise_alpha`: None
725
+ - `optim_target_modules`: None
726
+ - `batch_eval_metrics`: False
727
+ - `eval_on_start`: False
728
+ - `eval_use_gather_object`: False
729
+ - `batch_sampler`: no_duplicates
730
+ - `multi_dataset_batch_sampler`: proportional
731
+
732
+ </details>
733
+
734
+ ### Training Logs
735
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
736
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
737
+ | 0.8122 | 10 | 1.5176 | - | - | - | - | - |
738
+ | 0.9746 | 12 | - | 0.7500 | 0.7642 | 0.7680 | 0.7079 | 0.7708 |
739
+ | 1.6244 | 20 | 0.6868 | - | - | - | - | - |
740
+ | 1.9492 | 24 | - | 0.7657 | 0.7746 | 0.7784 | 0.7323 | 0.7816 |
741
+ | 2.4365 | 30 | 0.4738 | - | - | - | - | - |
742
+ | 2.9239 | 36 | - | 0.7691 | 0.7780 | 0.7790 | 0.7402 | 0.7796 |
743
+ | 3.2487 | 40 | 0.3934 | - | - | - | - | - |
744
+ | **3.8985** | **48** | **-** | **0.7697** | **0.7785** | **0.7809** | **0.7404** | **0.7808** |
745
+
746
+ * The bold row denotes the saved checkpoint.
747
+
748
+ ### Framework Versions
749
+ - Python: 3.11.9
750
+ - Sentence Transformers: 3.0.1
751
+ - Transformers: 4.44.2
752
+ - PyTorch: 2.4.0+cu121
753
+ - Accelerate: 0.33.0
754
+ - Datasets: 2.21.0
755
+ - Tokenizers: 0.19.1
756
+
757
+ ## Citation
758
+
759
+ ### BibTeX
760
+
761
+ #### Sentence Transformers
762
+ ```bibtex
763
+ @inproceedings{reimers-2019-sentence-bert,
764
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
765
+ author = "Reimers, Nils and Gurevych, Iryna",
766
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
767
+ month = "11",
768
+ year = "2019",
769
+ publisher = "Association for Computational Linguistics",
770
+ url = "https://arxiv.org/abs/1908.10084",
771
+ }
772
+ ```
773
+
774
+ #### MatryoshkaLoss
775
+ ```bibtex
776
+ @misc{kusupati2024matryoshka,
777
+ title={Matryoshka Representation Learning},
778
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
779
+ year={2024},
780
+ eprint={2205.13147},
781
+ archivePrefix={arXiv},
782
+ primaryClass={cs.LG}
783
+ }
784
+ ```
785
+
786
+ #### MultipleNegativesRankingLoss
787
+ ```bibtex
788
+ @misc{henderson2017efficient,
789
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
790
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
791
+ year={2017},
792
+ eprint={1705.00652},
793
+ archivePrefix={arXiv},
794
+ primaryClass={cs.CL}
795
+ }
796
+ ```
797
+
798
+ <!--
799
+ ## Glossary
800
+
801
+ *Clearly define terms in order to be accessible across audiences.*
802
+ -->
803
+
804
+ <!--
805
+ ## Model Card Authors
806
+
807
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
808
+ -->
809
+
810
+ <!--
811
+ ## Model Card Contact
812
+
813
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
814
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e05458dbfbaecef6a097a69fad45a69cb2fef1d03a839ef58338dbc049b42c0
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff