Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.17 +/- 22.91
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x780ab2b05b40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x780ab2b05bd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780ab2b05c60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780ab2b05cf0>", "_build": "<function ActorCriticPolicy._build at 0x780ab2b05d80>", "forward": "<function ActorCriticPolicy.forward at 0x780ab2b05e10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x780ab2b05ea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780ab2b05f30>", "_predict": "<function ActorCriticPolicy._predict at 0x780ab2b05fc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780ab2b06050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780ab2b060e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x780ab2b06170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x780ab2a97e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692938650331620806, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMxirwpkFO6FhcguO9JH7Mg0uw5osg8NwAAgD8AAIA/QNK8PZo4BT5jyR69dr+NvlhZVr1U4yO9AAAAAAAAAACA+Gq9FGKXPUiyCD70gG6+i+TEvSRZlrwAAAAAAAAAAOaVxr15Uxo/BnbjPVbTub4Y8LW9spnpPQAAAAAAAAAAmvDEPfb0OLrSz+26ETDAtfZnzjlVvAs6AAAAAAAAgD/NoPC84X6BuqVwR7qRzfe1k0QbO1r3aDkAAIA/AACAPw0Sgz0pcCi6wk9OOdJnljTGCEw7+3hzuAAAgD8AAIA/2qfIvXvuorofBiY677IbNdgdVLrq9T65AACAPwAAAABmtbu9exKRuhh4Wrkz4VW0ov8TOdYrfTgAAIA/AACAP4A0tL32nFS6vjZAuhBjhTbY60W71n5fOQAAgD8AAIA/AOYlvHumh7ryiUY6njuetE46XTsLDWe5AACAPwAAgD/Nwp899vRBujVx2Dpm8vM1jmJ0ulIr/LkAAIA/AAAAACZ5wr0zF7s+Z5AfPr02kb6VcMu94SMWPQAAAAAAAAAAEyk2vtSFqbxOXbq4qpcRuDx8FT7NYUk4AACAPwAAgD/N9Ic8rvWluhKcbbmvP1a0bvO1uk6giDgAAIA/AACAP0BztT2PJhG6KOKpOnyKjjUF+a44dQzEuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGP4k1dgOSaMAWyUTegDjAF0lEdAkfHK7yxzJnV9lChoBkdAZk1sEaESNGgHTegDaAhHQJHy3atcOb11fZQoaAZHQFz5X1anrIJoB03oA2gIR0CR8wQa72+PdX2UKGgGR0Bh7euLaVUuaAdN6ANoCEdAkf2RppN9IHV9lChoBkdAYnOHymQ8wGgHTegDaAhHQJH9yyTpxFR1fZQoaAZHQGMKSm65Gz9oB03oA2gIR0CSBrsfq5bydX2UKGgGR0BkrxGtp22YaAdN6ANoCEdAkgzqohpxm3V9lChoBkdAZezcB2fTTmgHTegDaAhHQJIOBU4rBj51fZQoaAZHQGV2TMaCL/FoB03oA2gIR0CSEJZ4fOlgdX2UKGgGR0BlCCz9jwx4aAdN6ANoCEdAkhb7sByS3nV9lChoBkdAZbfcqvvBrWgHTegDaAhHQJIqBckdFOR1fZQoaAZHQGSSTKs+3YtoB03oA2gIR0CSKy80UGmldX2UKGgGR0BmCljEvTPTaAdN6ANoCEdAki86ASWZ7XV9lChoBkdAYlqGM4tHx2gHTegDaAhHQJI1L+tKZlZ1fZQoaAZHQGVflWGRFJBoB03oA2gIR0CSNlWCVbA2dX2UKGgGR0BiFnh2nsLOaAdN6ANoCEdAkjdafzz3AXV9lChoBkdAZhZZg5R0l2gHTegDaAhHQJJAEOVgQYl1fZQoaAZHQF5kydnTRY1oB03oA2gIR0CSQNhUipvQdX2UKGgGR0BiFJdfLLZBaAdN6ANoCEdAkkDwCGN70HV9lChoBkdAZOz2ki2UjmgHTegDaAhHQJJIdVaOgg51fZQoaAZHQGLzCFj/dZdoB03oA2gIR0CSSKDmr8zidX2UKGgGR0BmzCGrS3LFaAdN6ANoCEdAklFbQ1JlKHV9lChoBkdAZU8nssxwhmgHTegDaAhHQJJYWU1Q66t1fZQoaAZHQGCn4bS7Xg9oB03oA2gIR0CSWZhnJ1aGdX2UKGgGR0BoCgouwosqaAdN6ANoCEdAklxxgy/KyXV9lChoBkdALCtKqXF98mgHS+BoCEdAkl9R2W6bv3V9lChoBkdAZhBaiblRxmgHTegDaAhHQJJjTXI2fkF1fZQoaAZHQGXacjiXIENoB03oA2gIR0CSZj0Sh8IBdX2UKGgGR0BgdiWPcSGraAdN6ANoCEdAkmd17tzCDXV9lChoBkdAXwGi22G7BmgHTegDaAhHQJKD3m9xp+N1fZQoaAZHQGLL3vphWo5oB03oA2gIR0CSiiP4VRDUdX2UKGgGR0BmS4QL/jsEaAdN6ANoCEdAkot1VktmMHV9lChoBkdAYUA9gWrOq2gHTegDaAhHQJKMfY8Md951fZQoaAZHQGOVtb9qDbtoB03oA2gIR0CSk9gKnei0dX2UKGgGR0Bj+8eS0Sh8aAdN6ANoCEdAkpSteMQ2/HV9lChoBkdAYW3L0z0pVmgHTegDaAhHQJKUx9AooeB1fZQoaAZHQG9OfgaWHDdoB03PAmgIR0CSnKxCY1HfdX2UKGgGR0BowwzWPLgXaAdN6ANoCEdAkp08+iaiK3V9lChoBkdAZT3M0P6KtWgHTegDaAhHQJKdY8fV7Qd1fZQoaAZHQE/FiQ1aW5ZoB0vxaAhHQJKp84ffXPJ1fZQoaAZHQGPQR+z+m3xoB03oA2gIR0CSrS0WdmQKdX2UKGgGR0Bit0ZNwiqyaAdN6ANoCEdAkrB5N9H+ZXV9lChoBkdAY9I0AtFrmGgHTegDaAhHQJKzu5y2hIx1fZQoaAZHQGb0DArQPZtoB03oA2gIR0CSuGQ40dildX2UKGgGR0BldyLqD9OzaAdN6ANoCEdAkrtqV+qioXV9lChoBkdAZEHCxeLNwGgHTegDaAhHQJK8LDZUT+N1fZQoaAZHQGTb/Vy3kPtoB03oA2gIR0CSzrXxOLzgdX2UKGgGR0Bhk7DuSfUXaAdN6ANoCEdAktKDnq3VkXV9lChoBkdAZM5p7CzkZWgHTegDaAhHQJLTV4MWoFV1fZQoaAZHQGdcT8xbjcVoB03oA2gIR0CS1Alb/wRXdX2UKGgGR0BoPLVhCtzTaAdN6ANoCEdAktsteY2KmHV9lChoBkdAaGgAwwj+rGgHTegDaAhHQJLcA6hg3Lp1fZQoaAZHQGTykAYHgP5oB03oA2gIR0CS3B3YL9dedX2UKGgGR0BOpS5qdpZfaAdL2mgIR0CS3RO801qGdX2UKGgGR0BnUWUD+zdDaAdN6ANoCEdAkuLKTwDvE3V9lChoBkdAYZsVAzHjqGgHTegDaAhHQJLjaKP4mC11fZQoaAZHQDHMOtnwob5oB0vYaAhHQJLmoWKuSwJ1fZQoaAZHQHF0emelKsdoB02LAWgIR0CS9RE74i5edX2UKGgGR0Bjg0UXYUWVaAdN6ANoCEdAkvUnf2saKnV9lChoBkdAaE07K7qY7mgHTegDaAhHQJL4dVYISlF1fZQoaAZHQGbMaeoUBXFoB03oA2gIR0CS+u6reZXudX2UKGgGR0BiJU1IiC8OaAdN6ANoCEdAkv02LP2PDHV9lChoBkdAYXqUSIxgzGgHTegDaAhHQJMAhBLPD511fZQoaAZHQGjnJzkp7TloB03oA2gIR0CTAs8OkLx7dX2UKGgGR0BjkMpmVZ9vaAdN6ANoCEdAkwOTcEeQuHV9lChoBkdAY0yxcmjTKGgHTegDaAhHQJMWwhkiD/V1fZQoaAZHQGIIJ17pmmNoB03oA2gIR0CTG7SX+l0pdX2UKGgGR0BnqDZtelbeaAdN6ANoCEdAkxx7C3w1BXV9lChoBkdATvQEhaC+UWgHS7poCEdAkyB7UTcqOXV9lChoBkdAY3YzPa+N+GgHTegDaAhHQJMnWlVLi/B1fZQoaAZHQGiGvqC6H0toB03oA2gIR0CTKO6VdHDrdX2UKGgGR0BntVjVhCtzaAdN6ANoCEdAkzG25hBqsXV9lChoBkdAaABd1MdtEWgHTegDaAhHQJMyinfl6qt1fZQoaAZHQGQhinP3SKFoB03oA2gIR0CTNazjFQ2udX2UKGgGR0BkM72criEQaAdN6ANoCEdAkz94qXnhbXV9lChoBkdAY/nPwd8zAWgHTegDaAhHQJM/iK77Kq51fZQoaAZHQGGmhUzbeuVoB03oA2gIR0CTQds+V1OkdX2UKGgGR0BvYt3fQ8fWaAdNwwNoCEdAk0JfICEHuHV9lChoBkdAcflmLLpzLmgHTaECaAhHQJNEeePJaJR1fZQoaAZHQGRo3kYGdI5oB03oA2gIR0CTRocSoOx0dX2UKGgGR0BkGpczImw8aAdN6ANoCEdAk0nOG47Rv3V9lChoBkdAYxZySV4X42gHTegDaAhHQJNMHpzLfUF1fZQoaAZHQGQHqGlANXpoB03oA2gIR0CTTOBYFJQMdX2UKGgGR0Bw/9N47ihnaAdNeAFoCEdAk2dbHAAQx3V9lChoBkdAYwLWilBQemgHTegDaAhHQJNoBWHUMG51fZQoaAZHQGJZArH2h7FoB03oA2gIR0CTbZSfDk2hdX2UKGgGR0ByeXNNahYeaAdNsQFoCEdAk27NRWLgoHV9lChoBkdAYYcHyEtdzGgHTegDaAhHQJNzjZ+QU6B1fZQoaAZHQGNsldszl91oB03oA2gIR0CTdJ8xKxs3dX2UKGgGR0BoBNic5Ke1aAdN6ANoCEdAk3pgX668QXV9lChoBkdAZF17F85S32gHTegDaAhHQJN67Ns3yZt1fZQoaAZHQGQw5le4TbpoB03oA2gIR0CTfVee4Cp4dX2UKGgGR0Bm4pw0fozOaAdN6ANoCEdAk4eC9RJmNHV9lChoBkdAZ2GaQ3gk1WgHTegDaAhHQJOHk0Q9RrJ1fZQoaAZHQGcBCYb83uNoB03oA2gIR0CTilBHTZxrdX2UKGgGR0BiZFLJ0W/KaAdN6ANoCEdAk4+qEvkBCHV9lChoBkdAcTm+I/JNkGgHTacCaAhHQJOSnAXVLBd1fZQoaAZHQGNeysS00FdoB03oA2gIR0CTk00Lc9GJdX2UKGgGR0BmKhuuRs/IaAdN6ANoCEdAk5Wy/sVtXXV9lChoBkdAX6o4ACGN72gHTegDaAhHQJOWfh5xBE91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c08d3b834f03f0092a11d9fdca5462202f5884b03fb93fda9612eaab806cd1a5
|
3 |
+
size 146750
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x780ab2b05b40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x780ab2b05bd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780ab2b05c60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780ab2b05cf0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x780ab2b05d80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x780ab2b05e10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x780ab2b05ea0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780ab2b05f30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x780ab2b05fc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780ab2b06050>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780ab2b060e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x780ab2b06170>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x780ab2a97e40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1692938650331620806,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMxirwpkFO6FhcguO9JH7Mg0uw5osg8NwAAgD8AAIA/QNK8PZo4BT5jyR69dr+NvlhZVr1U4yO9AAAAAAAAAACA+Gq9FGKXPUiyCD70gG6+i+TEvSRZlrwAAAAAAAAAAOaVxr15Uxo/BnbjPVbTub4Y8LW9spnpPQAAAAAAAAAAmvDEPfb0OLrSz+26ETDAtfZnzjlVvAs6AAAAAAAAgD/NoPC84X6BuqVwR7qRzfe1k0QbO1r3aDkAAIA/AACAPw0Sgz0pcCi6wk9OOdJnljTGCEw7+3hzuAAAgD8AAIA/2qfIvXvuorofBiY677IbNdgdVLrq9T65AACAPwAAAABmtbu9exKRuhh4Wrkz4VW0ov8TOdYrfTgAAIA/AACAP4A0tL32nFS6vjZAuhBjhTbY60W71n5fOQAAgD8AAIA/AOYlvHumh7ryiUY6njuetE46XTsLDWe5AACAPwAAgD/Nwp899vRBujVx2Dpm8vM1jmJ0ulIr/LkAAIA/AAAAACZ5wr0zF7s+Z5AfPr02kb6VcMu94SMWPQAAAAAAAAAAEyk2vtSFqbxOXbq4qpcRuDx8FT7NYUk4AACAPwAAgD/N9Ic8rvWluhKcbbmvP1a0bvO1uk6giDgAAIA/AACAP0BztT2PJhG6KOKpOnyKjjUF+a44dQzEuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGP4k1dgOSaMAWyUTegDjAF0lEdAkfHK7yxzJnV9lChoBkdAZk1sEaESNGgHTegDaAhHQJHy3atcOb11fZQoaAZHQFz5X1anrIJoB03oA2gIR0CR8wQa72+PdX2UKGgGR0Bh7euLaVUuaAdN6ANoCEdAkf2RppN9IHV9lChoBkdAYnOHymQ8wGgHTegDaAhHQJH9yyTpxFR1fZQoaAZHQGMKSm65Gz9oB03oA2gIR0CSBrsfq5bydX2UKGgGR0BkrxGtp22YaAdN6ANoCEdAkgzqohpxm3V9lChoBkdAZezcB2fTTmgHTegDaAhHQJIOBU4rBj51fZQoaAZHQGV2TMaCL/FoB03oA2gIR0CSEJZ4fOlgdX2UKGgGR0BlCCz9jwx4aAdN6ANoCEdAkhb7sByS3nV9lChoBkdAZbfcqvvBrWgHTegDaAhHQJIqBckdFOR1fZQoaAZHQGSSTKs+3YtoB03oA2gIR0CSKy80UGmldX2UKGgGR0BmCljEvTPTaAdN6ANoCEdAki86ASWZ7XV9lChoBkdAYlqGM4tHx2gHTegDaAhHQJI1L+tKZlZ1fZQoaAZHQGVflWGRFJBoB03oA2gIR0CSNlWCVbA2dX2UKGgGR0BiFnh2nsLOaAdN6ANoCEdAkjdafzz3AXV9lChoBkdAZhZZg5R0l2gHTegDaAhHQJJAEOVgQYl1fZQoaAZHQF5kydnTRY1oB03oA2gIR0CSQNhUipvQdX2UKGgGR0BiFJdfLLZBaAdN6ANoCEdAkkDwCGN70HV9lChoBkdAZOz2ki2UjmgHTegDaAhHQJJIdVaOgg51fZQoaAZHQGLzCFj/dZdoB03oA2gIR0CSSKDmr8zidX2UKGgGR0BmzCGrS3LFaAdN6ANoCEdAklFbQ1JlKHV9lChoBkdAZU8nssxwhmgHTegDaAhHQJJYWU1Q66t1fZQoaAZHQGCn4bS7Xg9oB03oA2gIR0CSWZhnJ1aGdX2UKGgGR0BoCgouwosqaAdN6ANoCEdAklxxgy/KyXV9lChoBkdALCtKqXF98mgHS+BoCEdAkl9R2W6bv3V9lChoBkdAZhBaiblRxmgHTegDaAhHQJJjTXI2fkF1fZQoaAZHQGXacjiXIENoB03oA2gIR0CSZj0Sh8IBdX2UKGgGR0BgdiWPcSGraAdN6ANoCEdAkmd17tzCDXV9lChoBkdAXwGi22G7BmgHTegDaAhHQJKD3m9xp+N1fZQoaAZHQGLL3vphWo5oB03oA2gIR0CSiiP4VRDUdX2UKGgGR0BmS4QL/jsEaAdN6ANoCEdAkot1VktmMHV9lChoBkdAYUA9gWrOq2gHTegDaAhHQJKMfY8Md951fZQoaAZHQGOVtb9qDbtoB03oA2gIR0CSk9gKnei0dX2UKGgGR0Bj+8eS0Sh8aAdN6ANoCEdAkpSteMQ2/HV9lChoBkdAYW3L0z0pVmgHTegDaAhHQJKUx9AooeB1fZQoaAZHQG9OfgaWHDdoB03PAmgIR0CSnKxCY1HfdX2UKGgGR0BowwzWPLgXaAdN6ANoCEdAkp08+iaiK3V9lChoBkdAZT3M0P6KtWgHTegDaAhHQJKdY8fV7Qd1fZQoaAZHQE/FiQ1aW5ZoB0vxaAhHQJKp84ffXPJ1fZQoaAZHQGPQR+z+m3xoB03oA2gIR0CSrS0WdmQKdX2UKGgGR0Bit0ZNwiqyaAdN6ANoCEdAkrB5N9H+ZXV9lChoBkdAY9I0AtFrmGgHTegDaAhHQJKzu5y2hIx1fZQoaAZHQGb0DArQPZtoB03oA2gIR0CSuGQ40dildX2UKGgGR0BldyLqD9OzaAdN6ANoCEdAkrtqV+qioXV9lChoBkdAZEHCxeLNwGgHTegDaAhHQJK8LDZUT+N1fZQoaAZHQGTb/Vy3kPtoB03oA2gIR0CSzrXxOLzgdX2UKGgGR0Bhk7DuSfUXaAdN6ANoCEdAktKDnq3VkXV9lChoBkdAZM5p7CzkZWgHTegDaAhHQJLTV4MWoFV1fZQoaAZHQGdcT8xbjcVoB03oA2gIR0CS1Alb/wRXdX2UKGgGR0BoPLVhCtzTaAdN6ANoCEdAktsteY2KmHV9lChoBkdAaGgAwwj+rGgHTegDaAhHQJLcA6hg3Lp1fZQoaAZHQGTykAYHgP5oB03oA2gIR0CS3B3YL9dedX2UKGgGR0BOpS5qdpZfaAdL2mgIR0CS3RO801qGdX2UKGgGR0BnUWUD+zdDaAdN6ANoCEdAkuLKTwDvE3V9lChoBkdAYZsVAzHjqGgHTegDaAhHQJLjaKP4mC11fZQoaAZHQDHMOtnwob5oB0vYaAhHQJLmoWKuSwJ1fZQoaAZHQHF0emelKsdoB02LAWgIR0CS9RE74i5edX2UKGgGR0Bjg0UXYUWVaAdN6ANoCEdAkvUnf2saKnV9lChoBkdAaE07K7qY7mgHTegDaAhHQJL4dVYISlF1fZQoaAZHQGbMaeoUBXFoB03oA2gIR0CS+u6reZXudX2UKGgGR0BiJU1IiC8OaAdN6ANoCEdAkv02LP2PDHV9lChoBkdAYXqUSIxgzGgHTegDaAhHQJMAhBLPD511fZQoaAZHQGjnJzkp7TloB03oA2gIR0CTAs8OkLx7dX2UKGgGR0BjkMpmVZ9vaAdN6ANoCEdAkwOTcEeQuHV9lChoBkdAY0yxcmjTKGgHTegDaAhHQJMWwhkiD/V1fZQoaAZHQGIIJ17pmmNoB03oA2gIR0CTG7SX+l0pdX2UKGgGR0BnqDZtelbeaAdN6ANoCEdAkxx7C3w1BXV9lChoBkdATvQEhaC+UWgHS7poCEdAkyB7UTcqOXV9lChoBkdAY3YzPa+N+GgHTegDaAhHQJMnWlVLi/B1fZQoaAZHQGiGvqC6H0toB03oA2gIR0CTKO6VdHDrdX2UKGgGR0BntVjVhCtzaAdN6ANoCEdAkzG25hBqsXV9lChoBkdAaABd1MdtEWgHTegDaAhHQJMyinfl6qt1fZQoaAZHQGQhinP3SKFoB03oA2gIR0CTNazjFQ2udX2UKGgGR0BkM72criEQaAdN6ANoCEdAkz94qXnhbXV9lChoBkdAY/nPwd8zAWgHTegDaAhHQJM/iK77Kq51fZQoaAZHQGGmhUzbeuVoB03oA2gIR0CTQds+V1OkdX2UKGgGR0BvYt3fQ8fWaAdNwwNoCEdAk0JfICEHuHV9lChoBkdAcflmLLpzLmgHTaECaAhHQJNEeePJaJR1fZQoaAZHQGRo3kYGdI5oB03oA2gIR0CTRocSoOx0dX2UKGgGR0BkGpczImw8aAdN6ANoCEdAk0nOG47Rv3V9lChoBkdAYxZySV4X42gHTegDaAhHQJNMHpzLfUF1fZQoaAZHQGQHqGlANXpoB03oA2gIR0CTTOBYFJQMdX2UKGgGR0Bw/9N47ihnaAdNeAFoCEdAk2dbHAAQx3V9lChoBkdAYwLWilBQemgHTegDaAhHQJNoBWHUMG51fZQoaAZHQGJZArH2h7FoB03oA2gIR0CTbZSfDk2hdX2UKGgGR0ByeXNNahYeaAdNsQFoCEdAk27NRWLgoHV9lChoBkdAYYcHyEtdzGgHTegDaAhHQJNzjZ+QU6B1fZQoaAZHQGNsldszl91oB03oA2gIR0CTdJ8xKxs3dX2UKGgGR0BoBNic5Ke1aAdN6ANoCEdAk3pgX668QXV9lChoBkdAZF17F85S32gHTegDaAhHQJN67Ns3yZt1fZQoaAZHQGQw5le4TbpoB03oA2gIR0CTfVee4Cp4dX2UKGgGR0Bm4pw0fozOaAdN6ANoCEdAk4eC9RJmNHV9lChoBkdAZ2GaQ3gk1WgHTegDaAhHQJOHk0Q9RrJ1fZQoaAZHQGcBCYb83uNoB03oA2gIR0CTilBHTZxrdX2UKGgGR0BiZFLJ0W/KaAdN6ANoCEdAk4+qEvkBCHV9lChoBkdAcTm+I/JNkGgHTacCaAhHQJOSnAXVLBd1fZQoaAZHQGNeysS00FdoB03oA2gIR0CTk00Lc9GJdX2UKGgGR0BmKhuuRs/IaAdN6ANoCEdAk5Wy/sVtXXV9lChoBkdAX6o4ACGN72gHTegDaAhHQJOWfh5xBE91ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b39b170c7f585baa51e234518ee1e0ee3c328706a62d2e78f35daf9cd55eb25c
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52c8b9ba99469d2cba0ec46e8249b3af1df1219e725d7e1633dc948760116614
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (180 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.17343449303604, "std_reward": 22.90838616226076, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-25T05:08:16.783632"}
|