File size: 14,255 Bytes
074c857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import torch
from PIL import Image
import requests
import numpy as np
import torchvision.transforms.functional as TF
from pytorch_lightning import seed_everything
import os
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler
from k_diffusion.external import CompVisDenoiser
from torch import autocast
from contextlib import nullcontext
from einops import rearrange, repeat

from .prompt import get_uc_and_c
from .k_samplers import sampler_fn, make_inject_timing_fn
from scipy.ndimage import gaussian_filter

from .callback import SamplerCallback

from .conditioning import exposure_loss, make_mse_loss, get_color_palette, make_clip_loss_fn
from .conditioning import make_rgb_color_match_loss, blue_loss_fn, threshold_by, make_aesthetics_loss_fn, mean_loss_fn, var_loss_fn, exposure_loss
from .model_wrap import CFGDenoiserWithGrad
from .load_images import load_img, load_mask_latent, prepare_mask, prepare_overlay_mask

def add_noise(sample: torch.Tensor, noise_amt: float) -> torch.Tensor:
    return sample + torch.randn(sample.shape, device=sample.device) * noise_amt

def generate(args, root, frame = 0, return_latent=False, return_sample=False, return_c=False):
    seed_everything(args.seed)
    os.makedirs(args.outdir, exist_ok=True)

    sampler = PLMSSampler(root.model) if args.sampler == 'plms' else DDIMSampler(root.model)
    model_wrap = CompVisDenoiser(root.model)
    batch_size = args.n_samples
    prompt = args.prompt
    assert prompt is not None
    data = [batch_size * [prompt]]
    precision_scope = autocast if args.precision == "autocast" else nullcontext

    init_latent = None
    mask_image = None
    init_image = None
    if args.init_latent is not None:
        init_latent = args.init_latent
    elif args.init_sample is not None:
        with precision_scope("cuda"):
            init_latent = root.model.get_first_stage_encoding(root.model.encode_first_stage(args.init_sample))
    elif args.use_init and args.init_image != None and args.init_image != '':
        init_image, mask_image = load_img(args.init_image, 
                                          shape=(args.W, args.H),  
                                          use_alpha_as_mask=args.use_alpha_as_mask)
        init_image = init_image.to(root.device)
        init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
        with precision_scope("cuda"):
            init_latent = root.model.get_first_stage_encoding(root.model.encode_first_stage(init_image))  # move to latent space        

    if not args.use_init and args.strength > 0 and args.strength_0_no_init:
        print("\nNo init image, but strength > 0. Strength has been auto set to 0, since use_init is False.")
        print("If you want to force strength > 0 with no init, please set strength_0_no_init to False.\n")
        args.strength = 0

    # Mask functions
    if args.use_mask:
        assert args.mask_file is not None or mask_image is not None, "use_mask==True: An mask image is required for a mask. Please enter a mask_file or use an init image with an alpha channel"
        assert args.use_init, "use_mask==True: use_init is required for a mask"
        assert init_latent is not None, "use_mask==True: An latent init image is required for a mask"


        mask = prepare_mask(args.mask_file if mask_image is None else mask_image, 
                            init_latent.shape, 
                            args.mask_contrast_adjust, 
                            args.mask_brightness_adjust,
                            args.invert_mask)
        
        if (torch.all(mask == 0) or torch.all(mask == 1)) and args.use_alpha_as_mask:
            raise Warning("use_alpha_as_mask==True: Using the alpha channel from the init image as a mask, but the alpha channel is blank.")
        
        mask = mask.to(root.device)
        mask = repeat(mask, '1 ... -> b ...', b=batch_size)
    else:
        mask = None

    assert not ( (args.use_mask and args.overlay_mask) and (args.init_sample is None and init_image is None)), "Need an init image when use_mask == True and overlay_mask == True"

    # Init MSE loss image
    init_mse_image = None
    if args.init_mse_scale and args.init_mse_image != None and args.init_mse_image != '':
        init_mse_image, mask_image = load_img(args.init_mse_image,
                                          shape=(args.W, args.H),
                                          use_alpha_as_mask=args.use_alpha_as_mask)
        init_mse_image = init_mse_image.to(root.device)
        init_mse_image = repeat(init_mse_image, '1 ... -> b ...', b=batch_size)

    assert not ( args.init_mse_scale != 0 and (args.init_mse_image is None or args.init_mse_image == '') ), "Need an init image when init_mse_scale != 0"

    t_enc = int((1.0-args.strength) * args.steps)

    # Noise schedule for the k-diffusion samplers (used for masking)
    k_sigmas = model_wrap.get_sigmas(args.steps)
    args.clamp_schedule = dict(zip(k_sigmas.tolist(), np.linspace(args.clamp_start,args.clamp_stop,args.steps+1)))
    k_sigmas = k_sigmas[len(k_sigmas)-t_enc-1:]

    if args.sampler in ['plms','ddim']:
        sampler.make_schedule(ddim_num_steps=args.steps, ddim_eta=args.ddim_eta, ddim_discretize='fill', verbose=False)

    if args.colormatch_scale != 0:
        assert args.colormatch_image is not None, "If using color match loss, colormatch_image is needed"
        colormatch_image, _ = load_img(args.colormatch_image)
        colormatch_image = colormatch_image.to('cpu')
        del(_)
    else:
        colormatch_image = None

    # Loss functions
    if args.init_mse_scale != 0:
        if args.decode_method == "linear":
            mse_loss_fn = make_mse_loss(root.model.linear_decode(root.model.get_first_stage_encoding(root.model.encode_first_stage(init_mse_image.to(root.device)))))
        else:
            mse_loss_fn = make_mse_loss(init_mse_image)
    else:
        mse_loss_fn = None

    if args.colormatch_scale != 0:
        _,_ = get_color_palette(root, args.colormatch_n_colors, colormatch_image, verbose=True) # display target color palette outside the latent space
        if args.decode_method == "linear":
            grad_img_shape = (int(args.W/args.f), int(args.H/args.f))
            colormatch_image = root.model.linear_decode(root.model.get_first_stage_encoding(root.model.encode_first_stage(colormatch_image.to(root.device))))
            colormatch_image = colormatch_image.to('cpu')
        else:
            grad_img_shape = (args.W, args.H)
        color_loss_fn = make_rgb_color_match_loss(root,
                                                  colormatch_image, 
                                                  n_colors=args.colormatch_n_colors, 
                                                  img_shape=grad_img_shape,
                                                  ignore_sat_weight=args.ignore_sat_weight)
    else:
        color_loss_fn = None

    if args.clip_scale != 0:
        clip_loss_fn = make_clip_loss_fn(root, args)
    else:
        clip_loss_fn = None

    if args.aesthetics_scale != 0:
        aesthetics_loss_fn = make_aesthetics_loss_fn(root, args)
    else:
        aesthetics_loss_fn = None

    if args.exposure_scale != 0:
        exposure_loss_fn = exposure_loss(args.exposure_target)
    else:
        exposure_loss_fn = None

    loss_fns_scales = [
        [clip_loss_fn,              args.clip_scale],
        [blue_loss_fn,              args.blue_scale],
        [mean_loss_fn,              args.mean_scale],
        [exposure_loss_fn,          args.exposure_scale],
        [var_loss_fn,               args.var_scale],
        [mse_loss_fn,               args.init_mse_scale],
        [color_loss_fn,             args.colormatch_scale],
        [aesthetics_loss_fn,        args.aesthetics_scale]
    ]

    # Conditioning gradients not implemented for ddim or PLMS
    assert not( any([cond_fs[1]!=0 for cond_fs in loss_fns_scales]) and (args.sampler in ["ddim","plms"]) ), "Conditioning gradients not implemented for ddim or plms. Please use a different sampler."

    callback = SamplerCallback(args=args,
                            root=root,
                            mask=mask, 
                            init_latent=init_latent,
                            sigmas=k_sigmas,
                            sampler=sampler,
                            verbose=False).callback 

    clamp_fn = threshold_by(threshold=args.clamp_grad_threshold, threshold_type=args.grad_threshold_type, clamp_schedule=args.clamp_schedule)

    grad_inject_timing_fn = make_inject_timing_fn(args.grad_inject_timing, model_wrap, args.steps)

    cfg_model = CFGDenoiserWithGrad(model_wrap, 
                                    loss_fns_scales, 
                                    clamp_fn, 
                                    args.gradient_wrt, 
                                    args.gradient_add_to, 
                                    args.cond_uncond_sync,
                                    decode_method=args.decode_method,
                                    grad_inject_timing_fn=grad_inject_timing_fn, # option to use grad in only a few of the steps
                                    grad_consolidate_fn=None, # function to add grad to image fn(img, grad, sigma)
                                    verbose=False)

    results = []
    with torch.no_grad():
        with precision_scope("cuda"):
            with root.model.ema_scope():
                for prompts in data:
                    if isinstance(prompts, tuple):
                        prompts = list(prompts)
                    if args.prompt_weighting:
                        uc, c = get_uc_and_c(prompts, root.model, args, frame)
                    else:
                        uc = root.model.get_learned_conditioning(batch_size * [""])
                        c = root.model.get_learned_conditioning(prompts)


                    if args.scale == 1.0:
                        uc = None
                    if args.init_c != None:
                        c = args.init_c

                    if args.sampler in ["klms","dpm2","dpm2_ancestral","heun","euler","euler_ancestral", "dpm_fast", "dpm_adaptive", "dpmpp_2s_a", "dpmpp_2m"]:
                        samples = sampler_fn(
                            c=c, 
                            uc=uc, 
                            args=args, 
                            model_wrap=cfg_model, 
                            init_latent=init_latent, 
                            t_enc=t_enc, 
                            device=root.device, 
                            cb=callback,
                            verbose=False)
                    else:
                        # args.sampler == 'plms' or args.sampler == 'ddim':
                        if init_latent is not None and args.strength > 0:
                            z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(root.device))
                        else:
                            z_enc = torch.randn([args.n_samples, args.C, args.H // args.f, args.W // args.f], device=root.device)
                        if args.sampler == 'ddim':
                            samples = sampler.decode(z_enc, 
                                                     c, 
                                                     t_enc, 
                                                     unconditional_guidance_scale=args.scale,
                                                     unconditional_conditioning=uc,
                                                     img_callback=callback)
                        elif args.sampler == 'plms': # no "decode" function in plms, so use "sample"
                            shape = [args.C, args.H // args.f, args.W // args.f]
                            samples, _ = sampler.sample(S=args.steps,
                                                            conditioning=c,
                                                            batch_size=args.n_samples,
                                                            shape=shape,
                                                            verbose=False,
                                                            unconditional_guidance_scale=args.scale,
                                                            unconditional_conditioning=uc,
                                                            eta=args.ddim_eta,
                                                            x_T=z_enc,
                                                            img_callback=callback)
                        else:
                            raise Exception(f"Sampler {args.sampler} not recognised.")

                    
                    if return_latent:
                        results.append(samples.clone())

                    x_samples = root.model.decode_first_stage(samples)

                    if args.use_mask and args.overlay_mask:
                        # Overlay the masked image after the image is generated
                        if args.init_sample_raw is not None:
                            img_original = args.init_sample_raw
                        elif init_image is not None:
                            img_original = init_image
                        else:
                            raise Exception("Cannot overlay the masked image without an init image to overlay")

                        if args.mask_sample is None:
                            args.mask_sample = prepare_overlay_mask(args, root, img_original.shape)

                        x_samples = img_original * args.mask_sample + x_samples * ((args.mask_sample * -1.0) + 1)

                    if return_sample:
                        results.append(x_samples.clone())

                    x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)

                    if return_c:
                        results.append(c.clone())

                    for x_sample in x_samples:
                        x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
                        image = Image.fromarray(x_sample.astype(np.uint8))
                        results.append(image)
    return results