Delete sd-vae-ft-mse
Browse files
sd-vae-ft-mse/README.md
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
tags:
|
4 |
-
- stable-diffusion
|
5 |
-
- stable-diffusion-diffusers
|
6 |
-
inference: false
|
7 |
-
---
|
8 |
-
# Improved Autoencoders
|
9 |
-
|
10 |
-
## Utilizing
|
11 |
-
These weights are intended to be used with the [🧨 diffusers library](https://github.com/huggingface/diffusers). If you are looking for the model to use with the original [CompVis Stable Diffusion codebase](https://github.com/CompVis/stable-diffusion), [come here](https://huggingface.co/stabilityai/sd-vae-ft-mse-original).
|
12 |
-
|
13 |
-
#### How to use with 🧨 diffusers
|
14 |
-
You can integrate this fine-tuned VAE decoder to your existing `diffusers` workflows, by including a `vae` argument to the `StableDiffusionPipeline`
|
15 |
-
```py
|
16 |
-
from diffusers.models import AutoencoderKL
|
17 |
-
from diffusers import StableDiffusionPipeline
|
18 |
-
|
19 |
-
model = "CompVis/stable-diffusion-v1-4"
|
20 |
-
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
|
21 |
-
pipe = StableDiffusionPipeline.from_pretrained(model, vae=vae)
|
22 |
-
```
|
23 |
-
|
24 |
-
## Decoder Finetuning
|
25 |
-
We publish two kl-f8 autoencoder versions, finetuned from the original [kl-f8 autoencoder](https://github.com/CompVis/latent-diffusion#pretrained-autoencoding-models) on a 1:1 ratio of [LAION-Aesthetics](https://laion.ai/blog/laion-aesthetics/) and LAION-Humans, an unreleased subset containing only SFW images of humans. The intent was to fine-tune on the Stable Diffusion training set (the autoencoder was originally trained on OpenImages) but also enrich the dataset with images of humans to improve the reconstruction of faces.
|
26 |
-
The first, _ft-EMA_, was resumed from the original checkpoint, trained for 313198 steps and uses EMA weights. It uses the same loss configuration as the original checkpoint (L1 + LPIPS).
|
27 |
-
The second, _ft-MSE_, was resumed from _ft-EMA_ and uses EMA weights and was trained for another 280k steps using a different loss, with more emphasis
|
28 |
-
on MSE reconstruction (MSE + 0.1 * LPIPS). It produces somewhat ``smoother'' outputs. The batch size for both versions was 192 (16 A100s, batch size 12 per GPU).
|
29 |
-
To keep compatibility with existing models, only the decoder part was finetuned; the checkpoints can be used as a drop-in replacement for the existing autoencoder.
|
30 |
-
|
31 |
-
_Original kl-f8 VAE vs f8-ft-EMA vs f8-ft-MSE_
|
32 |
-
|
33 |
-
## Evaluation
|
34 |
-
### COCO 2017 (256x256, val, 5000 images)
|
35 |
-
| Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments
|
36 |
-
|----------|---------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|
37 |
-
| | | | | | | | |
|
38 |
-
| original | 246803 | 4.99 | 23.4 +/- 3.8 | 0.69 +/- 0.14 | 1.01 +/- 0.28 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
|
39 |
-
| ft-EMA | 560001 | 4.42 | 23.8 +/- 3.9 | 0.69 +/- 0.13 | 0.96 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA |
|
40 |
-
| ft-MSE | 840001 | 4.70 | 24.5 +/- 3.7 | 0.71 +/- 0.13 | 0.92 +/- 0.27 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
|
41 |
-
|
42 |
-
|
43 |
-
### LAION-Aesthetics 5+ (256x256, subset, 10000 images)
|
44 |
-
| Model | train steps | rFID | PSNR | SSIM | PSIM | Link | Comments
|
45 |
-
|----------|-----------|------|--------------|---------------|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|
46 |
-
| | | | | | | | |
|
47 |
-
| original | 246803 | 2.61 | 26.0 +/- 4.4 | 0.81 +/- 0.12 | 0.75 +/- 0.36 | https://ommer-lab.com/files/latent-diffusion/kl-f8.zip | as used in SD |
|
48 |
-
| ft-EMA | 560001 | 1.77 | 26.7 +/- 4.8 | 0.82 +/- 0.12 | 0.67 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-ema-original/resolve/main/vae-ft-ema-560000-ema-pruned.ckpt | slightly better overall, with EMA |
|
49 |
-
| ft-MSE | 840001 | 1.88 | 27.3 +/- 4.7 | 0.83 +/- 0.11 | 0.65 +/- 0.34 | https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.ckpt | resumed with EMA from ft-EMA, emphasis on MSE (rec. loss = MSE + 0.1 * LPIPS), smoother outputs |
|
50 |
-
|
51 |
-
|
52 |
-
### Visual
|
53 |
-
_Visualization of reconstructions on 256x256 images from the COCO2017 validation dataset._
|
54 |
-
|
55 |
-
<p align="center">
|
56 |
-
<br>
|
57 |
-
<b>
|
58 |
-
256x256: ft-EMA (left), ft-MSE (middle), original (right)</b>
|
59 |
-
</p>
|
60 |
-
|
61 |
-
<p align="center">
|
62 |
-
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00025_merged.png />
|
63 |
-
</p>
|
64 |
-
|
65 |
-
<p align="center">
|
66 |
-
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00011_merged.png />
|
67 |
-
</p>
|
68 |
-
|
69 |
-
<p align="center">
|
70 |
-
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00037_merged.png />
|
71 |
-
</p>
|
72 |
-
|
73 |
-
<p align="center">
|
74 |
-
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00043_merged.png />
|
75 |
-
</p>
|
76 |
-
|
77 |
-
<p align="center">
|
78 |
-
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00053_merged.png />
|
79 |
-
</p>
|
80 |
-
|
81 |
-
<p align="center">
|
82 |
-
<img src=https://huggingface.co/stabilityai/stable-diffusion-decoder-finetune/resolve/main/eval/ae-decoder-tuning-reconstructions/merged/00029_merged.png />
|
83 |
-
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sd-vae-ft-mse/config.json
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_class_name": "AutoencoderKL",
|
3 |
-
"_diffusers_version": "0.4.2",
|
4 |
-
"act_fn": "silu",
|
5 |
-
"block_out_channels": [
|
6 |
-
128,
|
7 |
-
256,
|
8 |
-
512,
|
9 |
-
512
|
10 |
-
],
|
11 |
-
"down_block_types": [
|
12 |
-
"DownEncoderBlock2D",
|
13 |
-
"DownEncoderBlock2D",
|
14 |
-
"DownEncoderBlock2D",
|
15 |
-
"DownEncoderBlock2D"
|
16 |
-
],
|
17 |
-
"in_channels": 3,
|
18 |
-
"latent_channels": 4,
|
19 |
-
"layers_per_block": 2,
|
20 |
-
"norm_num_groups": 32,
|
21 |
-
"out_channels": 3,
|
22 |
-
"sample_size": 256,
|
23 |
-
"up_block_types": [
|
24 |
-
"UpDecoderBlock2D",
|
25 |
-
"UpDecoderBlock2D",
|
26 |
-
"UpDecoderBlock2D",
|
27 |
-
"UpDecoderBlock2D"
|
28 |
-
]
|
29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sd-vae-ft-mse/diffusion_pytorch_model.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1b4889b6b1d4ce7ae320a02dedaeff1780ad77d415ea0d744b476155c6377ddc
|
3 |
-
size 334707217
|
|
|
|
|
|
|
|
sd-vae-ft-mse/diffusion_pytorch_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a1d993488569e928462932c8c38a0760b874d166399b14414135bd9c42df5815
|
3 |
-
size 334643276
|
|
|
|
|
|
|
|