fcheboukh's picture
en_names_detection
136812a verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: my_awesome_wnut_model_2
    results: []

my_awesome_wnut_model_2

This model is a fine-tuned version of distilbert/distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0982
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.9814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 118 0.0915 0.0 0.0 0.0 0.9808
No log 2.0 236 0.0942 0.0 0.0 0.0 0.9812
No log 3.0 354 0.1112 0.0 0.0 0.0 0.9786
No log 4.0 472 0.0931 0.0 0.0 0.0 0.9806
0.0017 5.0 590 0.1000 0.0 0.0 0.0 0.9810
0.0017 6.0 708 0.0925 0.0 0.0 0.0 0.9810
0.0017 7.0 826 0.0976 0.0 0.0 0.0 0.9815
0.0017 8.0 944 0.0930 0.0 0.0 0.0 0.9815
0.0012 9.0 1062 0.1012 0.0 0.0 0.0 0.9810
0.0012 10.0 1180 0.0993 0.0 0.0 0.0 0.9814
0.0012 11.0 1298 0.0995 0.0 0.0 0.0 0.9812
0.0012 12.0 1416 0.0975 0.0 0.0 0.0 0.9814
0.0006 13.0 1534 0.0982 0.0 0.0 0.0 0.9814

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Tokenizers 0.21.0