fbaldassarri commited on
Commit
3373825
·
verified ·
1 Parent(s): 2635fc1

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -23,8 +23,8 @@ tags:
23
  - llama-3
24
  - intel-autoround
25
  - intel
26
- model_name: Llama 3.2 1B
27
- base_model: meta-llama/Llama-3.2-1B
28
  inference: false
29
  model_creator: meta-llama
30
  pipeline_tag: text-generation
@@ -35,7 +35,7 @@ quantized_by: fbaldassarri
35
 
36
  ## Model Information
37
 
38
- Quantized version of [meta-llama/Llama-3.2-1B](meta-llama/Llama-3.2-1B) using torch.float32 for quantization tuning.
39
  - 8 bits (INT8)
40
  - group size = 128
41
  - Asymmetrical Quantization
@@ -43,7 +43,7 @@ Quantized version of [meta-llama/Llama-3.2-1B](meta-llama/Llama-3.2-1B) using to
43
 
44
  Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round)
45
 
46
- Note: this INT8 version of Llama-3.2-1B has been quantized to run inference through CPU.
47
 
48
  ## Replication Recipe
49
 
@@ -68,14 +68,14 @@ pip install -vvv --no-build-isolation -e .[cpu]
68
 
69
  ```
70
  from transformers import AutoModelForCausalLM, AutoTokenizer
71
- model_name = "meta-llama/Llama-3.2-1B"
72
  model = AutoModelForCausalLM.from_pretrained(model_name)
73
  tokenizer = AutoTokenizer.from_pretrained(model_name)
74
  from auto_round import AutoRound
75
  bits, group_size, sym, device, amp = 8, 128, False, 'cpu', False
76
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
77
  autoround.quantize()
78
- output_dir = "./AutoRound/meta-llama_Llama-3.2-1B-auto_gptq-int8-gs128-asym"
79
  autoround.save_quantized(output_dir, format='auto_gptq', inplace=True)
80
  ```
81
 
 
23
  - llama-3
24
  - intel-autoround
25
  - intel
26
+ model_name: Llama 3.2 1B Instruct
27
+ base_model: meta-llama/Llama-3.2-1B-Instruct
28
  inference: false
29
  model_creator: meta-llama
30
  pipeline_tag: text-generation
 
35
 
36
  ## Model Information
37
 
38
+ Quantized version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) using torch.float32 for quantization tuning.
39
  - 8 bits (INT8)
40
  - group size = 128
41
  - Asymmetrical Quantization
 
43
 
44
  Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round)
45
 
46
+ Note: this INT8 version of Llama-3.2-1B-Instruct has been quantized to run inference through CPU.
47
 
48
  ## Replication Recipe
49
 
 
68
 
69
  ```
70
  from transformers import AutoModelForCausalLM, AutoTokenizer
71
+ model_name = "meta-llama/Llama-3.2-1B-Instruct"
72
  model = AutoModelForCausalLM.from_pretrained(model_name)
73
  tokenizer = AutoTokenizer.from_pretrained(model_name)
74
  from auto_round import AutoRound
75
  bits, group_size, sym, device, amp = 8, 128, False, 'cpu', False
76
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
77
  autoround.quantize()
78
+ output_dir = "./AutoRound/meta-llama_Llama-3.2-1B-Instruct-auto_gptq-int8-gs128-asym"
79
  autoround.save_quantized(output_dir, format='auto_gptq', inplace=True)
80
  ```
81