File size: 2,109 Bytes
92f0dfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- en
tags:
- pytorch
- causal-lm
- tinyllama
- autoround
- autoawq
- intel
- awq
- woq
license: apache-2.0
model_name: TinyLlama 1.1B v1.1
base_model: TinyLlama/TinyLlama_v1.1
inference: false
model_creator: TinyLlama
datasets:
- cerebras/SlimPajama-627B
pipeline_tag: text-generation
prompt_template: '{prompt}
'
quantized_by: fbaldassarri
---
## Model Information
Quantized version of [TinyLlama 1.1B v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1/) using torch.float32 for quantization tuning.
- 4 bits (INT4)
- group size = 128
- Symmetrical Quantization
- Method AutoAWQ
Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round)
Note: this INT4 version of TinyLlama 1.1B v1.1 has been quantized to run inference through CPU.
## Replication Recipe
### Step 1 Install Requirements
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
```
python -m pip install <package> --upgrade
```
- accelerate==1.0.1
- auto_gptq==0.7.1
- neural_compressor==3.1
- torch==2.3.0+cpu
- torchaudio==2.5.0+cpu
- torchvision==0.18.0+cpu
- transformers==4.45.2
### Step 2 Build Intel Autoround wheel from sources
```
python -m pip install git+https://github.com/intel/auto-round.git
```
### Step 3 Script for Quantization
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "TinyLlama/TinyLlama_v1.1"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
from auto_round import AutoRound
bits, group_size, sym = 4, 128, True
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym)
autoround.quantize()
output_dir = "./AutoRound/TinyLlama_TinyLlama_v1.1-autoawq-int4-gs128-sym"
autoround.save_quantized(output_dir, format='auto_awq', inplace=True)
```
## License
[Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
## Disclaimer
This quantized model comes with no warrenty. It has been developed only for research purposes.
|