fangxq commited on
Commit
66bca23
·
verified ·
1 Parent(s): 1e970cd

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +287 -264
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  model-index:
3
  - name: XYZ-embedding-zh
4
  results:
@@ -10,11 +11,11 @@ model-index:
10
  type: C-MTEB/CMedQAv1-reranking
11
  metrics:
12
  - type: map
13
- value: 89.9766367822762
14
  - type: mrr
15
- value: 91.88896825396824
16
  - type: main_score
17
- value: 89.9766367822762
18
  task:
19
  type: Reranking
20
  - dataset:
@@ -25,11 +26,11 @@ model-index:
25
  type: C-MTEB/CMedQAv2-reranking
26
  metrics:
27
  - type: map
28
- value: 89.04628340075982
29
  - type: mrr
30
- value: 91.21702380952381
31
  - type: main_score
32
- value: 89.04628340075982
33
  task:
34
  type: Reranking
35
  - dataset:
@@ -40,67 +41,67 @@ model-index:
40
  type: C-MTEB/CmedqaRetrieval
41
  metrics:
42
  - type: map_at_1
43
- value: 27.796
44
  - type: map_at_10
45
- value: 41.498000000000005
46
  - type: map_at_100
47
- value: 43.332
48
  - type: map_at_1000
49
- value: 43.429
50
  - type: map_at_3
51
- value: 37.172
52
  - type: map_at_5
53
- value: 39.617000000000004
54
  - type: mrr_at_1
55
- value: 42.111
56
  - type: mrr_at_10
57
- value: 50.726000000000006
58
  - type: mrr_at_100
59
- value: 51.632
60
  - type: mrr_at_1000
61
- value: 51.67
62
  - type: mrr_at_3
63
- value: 48.429
64
  - type: mrr_at_5
65
- value: 49.662
66
  - type: ndcg_at_1
67
- value: 42.111
68
  - type: ndcg_at_10
69
- value: 48.294
70
  - type: ndcg_at_100
71
- value: 55.135999999999996
72
  - type: ndcg_at_1000
73
- value: 56.818000000000005
74
  - type: ndcg_at_3
75
- value: 43.185
76
  - type: ndcg_at_5
77
- value: 45.266
78
  - type: precision_at_1
79
- value: 42.111
80
  - type: precision_at_10
81
- value: 10.635
82
  - type: precision_at_100
83
- value: 1.619
84
  - type: precision_at_1000
85
  value: 0.183
86
  - type: precision_at_3
87
- value: 24.539
88
  - type: precision_at_5
89
- value: 17.644000000000002
90
  - type: recall_at_1
91
- value: 27.796
92
  - type: recall_at_10
93
- value: 59.034
94
  - type: recall_at_100
95
- value: 86.991
96
  - type: recall_at_1000
97
- value: 98.304
98
  - type: recall_at_3
99
- value: 43.356
100
  - type: recall_at_5
101
- value: 49.998
102
  - type: main_score
103
- value: 48.294
104
  task:
105
  type: Retrieval
106
  - dataset:
@@ -111,67 +112,67 @@ model-index:
111
  type: C-MTEB/CovidRetrieval
112
  metrics:
113
  - type: map_at_1
114
- value: 80.479
115
  - type: map_at_10
116
- value: 87.984
117
  - type: map_at_100
118
- value: 88.036
119
  - type: map_at_1000
120
- value: 88.03699999999999
121
  - type: map_at_3
122
- value: 87.083
123
  - type: map_at_5
124
- value: 87.694
125
  - type: mrr_at_1
126
- value: 80.927
127
  - type: mrr_at_10
128
- value: 88.046
129
  - type: mrr_at_100
130
- value: 88.099
131
  - type: mrr_at_1000
132
- value: 88.1
133
  - type: mrr_at_3
134
- value: 87.215
135
  - type: mrr_at_5
136
- value: 87.768
137
  - type: ndcg_at_1
138
- value: 80.927
139
  - type: ndcg_at_10
140
- value: 90.756
141
  - type: ndcg_at_100
142
- value: 90.96
143
  - type: ndcg_at_1000
144
- value: 90.975
145
  - type: ndcg_at_3
146
- value: 89.032
147
  - type: ndcg_at_5
148
- value: 90.106
149
  - type: precision_at_1
150
- value: 80.927
151
  - type: precision_at_10
152
- value: 10.011000000000001
153
  - type: precision_at_100
154
- value: 1.009
155
  - type: precision_at_1000
156
  value: 0.101
157
  - type: precision_at_3
158
- value: 31.752999999999997
159
  - type: precision_at_5
160
- value: 19.6
161
  - type: recall_at_1
162
- value: 80.479
163
  - type: recall_at_10
164
- value: 99.05199999999999
165
  - type: recall_at_100
166
- value: 99.895
167
  - type: recall_at_1000
168
  value: 100.0
169
  - type: recall_at_3
170
- value: 94.494
171
  - type: recall_at_5
172
- value: 97.102
173
  - type: main_score
174
- value: 90.756
175
  task:
176
  type: Retrieval
177
  - dataset:
@@ -182,67 +183,67 @@ model-index:
182
  type: C-MTEB/DuRetrieval
183
  metrics:
184
  - type: map_at_1
185
- value: 27.853
186
  - type: map_at_10
187
- value: 85.13199999999999
188
  - type: map_at_100
189
- value: 87.688
190
  - type: map_at_1000
191
- value: 87.712
192
  - type: map_at_3
193
- value: 59.705
194
  - type: map_at_5
195
- value: 75.139
196
  - type: mrr_at_1
197
  value: 93.65
198
  - type: mrr_at_10
199
- value: 95.682
200
  - type: mrr_at_100
201
- value: 95.722
202
  - type: mrr_at_1000
203
- value: 95.724
204
  - type: mrr_at_3
205
- value: 95.467
206
  - type: mrr_at_5
207
- value: 95.612
208
  - type: ndcg_at_1
209
  value: 93.65
210
  - type: ndcg_at_10
211
- value: 91.155
212
  - type: ndcg_at_100
213
- value: 93.183
214
  - type: ndcg_at_1000
215
- value: 93.38499999999999
216
  - type: ndcg_at_3
217
- value: 90.648
218
  - type: ndcg_at_5
219
- value: 89.47699999999999
220
  - type: precision_at_1
221
  value: 93.65
222
  - type: precision_at_10
223
- value: 43.11
224
  - type: precision_at_100
225
- value: 4.854
226
  - type: precision_at_1000
227
- value: 0.49100000000000005
228
  - type: precision_at_3
229
- value: 81.11699999999999
230
  - type: precision_at_5
231
- value: 68.28999999999999
232
  - type: recall_at_1
233
- value: 27.853
234
  - type: recall_at_10
235
- value: 91.678
236
  - type: recall_at_100
237
- value: 98.553
238
  - type: recall_at_1000
239
- value: 99.553
240
  - type: recall_at_3
241
- value: 61.381
242
  - type: recall_at_5
243
- value: 78.605
244
  - type: main_score
245
- value: 91.155
246
  task:
247
  type: Retrieval
248
  - dataset:
@@ -253,67 +254,67 @@ model-index:
253
  type: C-MTEB/EcomRetrieval
254
  metrics:
255
  - type: map_at_1
256
- value: 54.50000000000001
257
  - type: map_at_10
258
- value: 65.167
259
  - type: map_at_100
260
- value: 65.664
261
  - type: map_at_1000
262
- value: 65.67399999999999
263
  - type: map_at_3
264
- value: 62.633
265
  - type: map_at_5
266
- value: 64.208
267
  - type: mrr_at_1
268
- value: 54.50000000000001
269
  - type: mrr_at_10
270
- value: 65.167
271
  - type: mrr_at_100
272
- value: 65.664
273
  - type: mrr_at_1000
274
- value: 65.67399999999999
275
  - type: mrr_at_3
276
- value: 62.633
277
  - type: mrr_at_5
278
- value: 64.208
279
  - type: ndcg_at_1
280
- value: 54.50000000000001
281
  - type: ndcg_at_10
282
- value: 70.294
283
  - type: ndcg_at_100
284
- value: 72.564
285
  - type: ndcg_at_1000
286
- value: 72.841
287
  - type: ndcg_at_3
288
- value: 65.128
289
  - type: ndcg_at_5
290
- value: 67.96799999999999
291
  - type: precision_at_1
292
- value: 54.50000000000001
293
  - type: precision_at_10
294
- value: 8.64
295
  - type: precision_at_100
296
- value: 0.967
297
  - type: precision_at_1000
298
- value: 0.099
299
  - type: precision_at_3
300
- value: 24.099999999999998
301
  - type: precision_at_5
302
- value: 15.840000000000002
303
  - type: recall_at_1
304
- value: 54.50000000000001
305
  - type: recall_at_10
306
- value: 86.4
307
  - type: recall_at_100
308
- value: 96.7
309
  - type: recall_at_1000
310
- value: 98.9
311
  - type: recall_at_3
312
- value: 72.3
313
  - type: recall_at_5
314
- value: 79.2
315
  - type: main_score
316
- value: 70.294
317
  task:
318
  type: Retrieval
319
  - dataset:
@@ -324,11 +325,11 @@ model-index:
324
  type: C-MTEB/Mmarco-reranking
325
  metrics:
326
  - type: map
327
- value: 37.68251937316638
328
  - type: mrr
329
- value: 36.61746031746032
330
  - type: main_score
331
- value: 37.68251937316638
332
  task:
333
  type: Reranking
334
  - dataset:
@@ -339,67 +340,67 @@ model-index:
339
  type: C-MTEB/MMarcoRetrieval
340
  metrics:
341
  - type: map_at_1
342
- value: 69.401
343
  - type: map_at_10
344
- value: 78.8
345
  - type: map_at_100
346
- value: 79.077
347
  - type: map_at_1000
348
- value: 79.081
349
  - type: map_at_3
350
- value: 76.97
351
  - type: map_at_5
352
- value: 78.185
353
  - type: mrr_at_1
354
- value: 71.719
355
  - type: mrr_at_10
356
- value: 79.327
357
  - type: mrr_at_100
358
- value: 79.56400000000001
359
  - type: mrr_at_1000
360
- value: 79.56800000000001
361
  - type: mrr_at_3
362
- value: 77.736
363
  - type: mrr_at_5
364
- value: 78.782
365
  - type: ndcg_at_1
366
- value: 71.719
367
  - type: ndcg_at_10
368
- value: 82.505
369
  - type: ndcg_at_100
370
- value: 83.673
371
  - type: ndcg_at_1000
372
- value: 83.786
373
  - type: ndcg_at_3
374
- value: 79.07600000000001
375
  - type: ndcg_at_5
376
- value: 81.122
377
  - type: precision_at_1
378
- value: 71.719
379
  - type: precision_at_10
380
- value: 9.924
381
  - type: precision_at_100
382
- value: 1.049
383
  - type: precision_at_1000
384
  value: 0.106
385
  - type: precision_at_3
386
- value: 29.742
387
  - type: precision_at_5
388
- value: 18.937
389
  - type: recall_at_1
390
- value: 69.401
391
  - type: recall_at_10
392
- value: 93.349
393
  - type: recall_at_100
394
- value: 98.492
395
  - type: recall_at_1000
396
- value: 99.384
397
  - type: recall_at_3
398
- value: 84.385
399
  - type: recall_at_5
400
- value: 89.237
401
  - type: main_score
402
- value: 82.505
403
  task:
404
  type: Retrieval
405
  - dataset:
@@ -412,65 +413,65 @@ model-index:
412
  - type: map_at_1
413
  value: 57.8
414
  - type: map_at_10
415
- value: 64.696
416
  - type: map_at_100
417
- value: 65.294
418
  - type: map_at_1000
419
- value: 65.328
420
  - type: map_at_3
421
- value: 62.949999999999996
422
  - type: map_at_5
423
- value: 64.095
424
  - type: mrr_at_1
425
  value: 58.099999999999994
426
  - type: mrr_at_10
427
- value: 64.85
428
  - type: mrr_at_100
429
- value: 65.448
430
  - type: mrr_at_1000
431
- value: 65.482
432
  - type: mrr_at_3
433
- value: 63.1
434
  - type: mrr_at_5
435
- value: 64.23
436
  - type: ndcg_at_1
437
  value: 57.8
438
  - type: ndcg_at_10
439
- value: 68.041
440
  - type: ndcg_at_100
441
- value: 71.074
442
  - type: ndcg_at_1000
443
- value: 71.919
444
  - type: ndcg_at_3
445
- value: 64.584
446
  - type: ndcg_at_5
447
- value: 66.625
448
  - type: precision_at_1
449
  value: 57.8
450
  - type: precision_at_10
451
- value: 7.85
452
  - type: precision_at_100
453
- value: 0.9289999999999999
454
  - type: precision_at_1000
455
  value: 0.099
456
  - type: precision_at_3
457
- value: 23.1
458
  - type: precision_at_5
459
- value: 14.84
460
  - type: recall_at_1
461
  value: 57.8
462
  - type: recall_at_10
463
- value: 78.5
464
  - type: recall_at_100
465
- value: 92.9
466
  - type: recall_at_1000
467
- value: 99.4
468
  - type: recall_at_3
469
- value: 69.3
470
  - type: recall_at_5
471
- value: 74.2
472
  - type: main_score
473
- value: 68.041
474
  task:
475
  type: Retrieval
476
  - dataset:
@@ -481,11 +482,11 @@ model-index:
481
  type: C-MTEB/T2Reranking
482
  metrics:
483
  - type: map
484
- value: 69.13287570713865
485
  - type: mrr
486
- value: 79.95326487625066
487
  - type: main_score
488
- value: 69.13287570713865
489
  task:
490
  type: Reranking
491
  - dataset:
@@ -496,67 +497,67 @@ model-index:
496
  type: C-MTEB/T2Retrieval
497
  metrics:
498
  - type: map_at_1
499
- value: 28.041
500
  - type: map_at_10
501
- value: 78.509
502
  - type: map_at_100
503
- value: 82.083
504
  - type: map_at_1000
505
- value: 82.143
506
  - type: map_at_3
507
- value: 55.345
508
  - type: map_at_5
509
- value: 67.899
510
  - type: mrr_at_1
511
- value: 90.86
512
  - type: mrr_at_10
513
- value: 93.31
514
  - type: mrr_at_100
515
- value: 93.388
516
  - type: mrr_at_1000
517
- value: 93.391
518
  - type: mrr_at_3
519
- value: 92.92200000000001
520
  - type: mrr_at_5
521
- value: 93.167
522
  - type: ndcg_at_1
523
- value: 90.86
524
  - type: ndcg_at_10
525
- value: 85.875
526
  - type: ndcg_at_100
527
- value: 89.269
528
  - type: ndcg_at_1000
529
- value: 89.827
530
  - type: ndcg_at_3
531
- value: 87.254
532
  - type: ndcg_at_5
533
- value: 85.855
534
  - type: precision_at_1
535
- value: 90.86
536
  - type: precision_at_10
537
- value: 42.488
538
  - type: precision_at_100
539
- value: 5.029
540
  - type: precision_at_1000
541
  value: 0.516
542
  - type: precision_at_3
543
- value: 76.172
544
  - type: precision_at_5
545
- value: 63.759
546
  - type: recall_at_1
547
- value: 28.041
548
  - type: recall_at_10
549
- value: 84.829
550
  - type: recall_at_100
551
- value: 95.89999999999999
552
  - type: recall_at_1000
553
- value: 98.665
554
  - type: recall_at_3
555
- value: 57.009
556
  - type: recall_at_5
557
- value: 71.188
558
  - type: main_score
559
- value: 85.875
560
  task:
561
  type: Retrieval
562
  - dataset:
@@ -567,99 +568,121 @@ model-index:
567
  type: C-MTEB/VideoRetrieval
568
  metrics:
569
  - type: map_at_1
570
- value: 67.30000000000001
571
  - type: map_at_10
572
- value: 76.819
573
  - type: map_at_100
574
- value: 77.141
575
  - type: map_at_1000
576
- value: 77.142
577
  - type: map_at_3
578
- value: 75.233
579
  - type: map_at_5
580
- value: 76.163
581
  - type: mrr_at_1
582
- value: 67.30000000000001
583
  - type: mrr_at_10
584
- value: 76.819
585
  - type: mrr_at_100
586
- value: 77.141
587
  - type: mrr_at_1000
588
- value: 77.142
589
  - type: mrr_at_3
590
- value: 75.233
591
  - type: mrr_at_5
592
- value: 76.163
593
  - type: ndcg_at_1
594
- value: 67.30000000000001
595
  - type: ndcg_at_10
596
- value: 80.93599999999999
597
  - type: ndcg_at_100
598
- value: 82.311
599
  - type: ndcg_at_1000
600
- value: 82.349
601
  - type: ndcg_at_3
602
- value: 77.724
603
  - type: ndcg_at_5
604
- value: 79.406
605
  - type: precision_at_1
606
- value: 67.30000000000001
607
  - type: precision_at_10
608
- value: 9.36
609
  - type: precision_at_100
610
- value: 0.996
611
  - type: precision_at_1000
612
  value: 0.1
613
  - type: precision_at_3
614
- value: 28.299999999999997
615
  - type: precision_at_5
616
- value: 17.8
617
  - type: recall_at_1
618
- value: 67.30000000000001
619
  - type: recall_at_10
620
- value: 93.60000000000001
621
  - type: recall_at_100
622
- value: 99.6
623
  - type: recall_at_1000
624
- value: 99.9
625
  - type: recall_at_3
626
- value: 84.89999999999999
627
  - type: recall_at_5
628
- value: 89.0
629
  - type: main_score
630
- value: 80.93599999999999
631
  task:
632
  type: Retrieval
 
633
  tags:
 
 
 
634
  - mteb
635
  ---
636
- XYZ-embedding-zh
 
 
637
 
638
- ## Usage (Sentence Transformers)
639
 
640
- First install the Sentence Transformers library:
641
 
642
- ```bash
 
 
 
 
643
  pip install -U sentence-transformers
644
  ```
645
- Then you can load this model and run inference.
 
 
646
  ```python
647
  from sentence_transformers import SentenceTransformer
 
648
 
649
- # Download from the 🤗 Hub
650
- model = SentenceTransformer("fangxq/XYZ-embedding-zh")
651
- # Run inference
652
- sentences = [
653
- 'The weather is lovely today.',
654
- "It's so sunny outside!",
655
- 'He drove to the stadium.',
656
- ]
657
  embeddings = model.encode(sentences)
658
- print(embeddings.shape)
659
- # [3, 1792]
 
 
 
 
 
 
 
 
660
 
661
- # Get the similarity scores for the embeddings
662
- similarities = model.similarity(embeddings, embeddings)
663
- print(similarities.shape)
664
- # [3, 3]
 
 
 
 
 
665
  ```
 
 
 
 
1
  ---
2
+ library_name: sentence-transformers
3
  model-index:
4
  - name: XYZ-embedding-zh
5
  results:
 
11
  type: C-MTEB/CMedQAv1-reranking
12
  metrics:
13
  - type: map
14
+ value: 89.61792115239176
15
  - type: mrr
16
+ value: 91.46722222222222
17
  - type: main_score
18
+ value: 89.61792115239176
19
  task:
20
  type: Reranking
21
  - dataset:
 
26
  type: C-MTEB/CMedQAv2-reranking
27
  metrics:
28
  - type: map
29
+ value: 89.22040591564271
30
  - type: mrr
31
+ value: 91.2995238095238
32
  - type: main_score
33
+ value: 89.22040591564271
34
  task:
35
  type: Reranking
36
  - dataset:
 
41
  type: C-MTEB/CmedqaRetrieval
42
  metrics:
43
  - type: map_at_1
44
+ value: 27.939000000000004
45
  - type: map_at_10
46
+ value: 41.227999999999994
47
  - type: map_at_100
48
+ value: 43.018
49
  - type: map_at_1000
50
+ value: 43.120000000000005
51
  - type: map_at_3
52
+ value: 36.895
53
  - type: map_at_5
54
+ value: 39.373999999999995
55
  - type: mrr_at_1
56
+ value: 42.136
57
  - type: mrr_at_10
58
+ value: 50.394000000000005
59
  - type: mrr_at_100
60
+ value: 51.288
61
  - type: mrr_at_1000
62
+ value: 51.324000000000005
63
  - type: mrr_at_3
64
+ value: 47.887
65
  - type: mrr_at_5
66
+ value: 49.362
67
  - type: ndcg_at_1
68
+ value: 42.136
69
  - type: ndcg_at_10
70
+ value: 47.899
71
  - type: ndcg_at_100
72
+ value: 54.730999999999995
73
  - type: ndcg_at_1000
74
+ value: 56.462999999999994
75
  - type: ndcg_at_3
76
+ value: 42.66
77
  - type: ndcg_at_5
78
+ value: 44.913
79
  - type: precision_at_1
80
+ value: 42.136
81
  - type: precision_at_10
82
+ value: 10.52
83
  - type: precision_at_100
84
+ value: 1.6070000000000002
85
  - type: precision_at_1000
86
  value: 0.183
87
  - type: precision_at_3
88
+ value: 24.064
89
  - type: precision_at_5
90
+ value: 17.374000000000002
91
  - type: recall_at_1
92
+ value: 27.939000000000004
93
  - type: recall_at_10
94
+ value: 58.29600000000001
95
  - type: recall_at_100
96
+ value: 86.504
97
  - type: recall_at_1000
98
+ value: 98.105
99
  - type: recall_at_3
100
+ value: 42.475
101
  - type: recall_at_5
102
+ value: 49.454
103
  - type: main_score
104
+ value: 47.899
105
  task:
106
  type: Retrieval
107
  - dataset:
 
112
  type: C-MTEB/CovidRetrieval
113
  metrics:
114
  - type: map_at_1
115
+ value: 77.371
116
  - type: map_at_10
117
+ value: 85.229
118
  - type: map_at_100
119
+ value: 85.358
120
  - type: map_at_1000
121
+ value: 85.36
122
  - type: map_at_3
123
+ value: 84.176
124
  - type: map_at_5
125
+ value: 84.79299999999999
126
  - type: mrr_at_1
127
+ value: 77.661
128
  - type: mrr_at_10
129
+ value: 85.207
130
  - type: mrr_at_100
131
+ value: 85.33699999999999
132
  - type: mrr_at_1000
133
+ value: 85.339
134
  - type: mrr_at_3
135
+ value: 84.229
136
  - type: mrr_at_5
137
+ value: 84.79299999999999
138
  - type: ndcg_at_1
139
+ value: 77.766
140
  - type: ndcg_at_10
141
+ value: 88.237
142
  - type: ndcg_at_100
143
+ value: 88.777
144
  - type: ndcg_at_1000
145
+ value: 88.818
146
  - type: ndcg_at_3
147
+ value: 86.16
148
  - type: ndcg_at_5
149
+ value: 87.22
150
  - type: precision_at_1
151
+ value: 77.766
152
  - type: precision_at_10
153
+ value: 9.841999999999999
154
  - type: precision_at_100
155
+ value: 1.0070000000000001
156
  - type: precision_at_1000
157
  value: 0.101
158
  - type: precision_at_3
159
+ value: 30.875000000000004
160
  - type: precision_at_5
161
+ value: 19.073
162
  - type: recall_at_1
163
+ value: 77.371
164
  - type: recall_at_10
165
+ value: 97.366
166
  - type: recall_at_100
167
+ value: 99.684
168
  - type: recall_at_1000
169
  value: 100.0
170
  - type: recall_at_3
171
+ value: 91.702
172
  - type: recall_at_5
173
+ value: 94.31
174
  - type: main_score
175
+ value: 88.237
176
  task:
177
  type: Retrieval
178
  - dataset:
 
183
  type: C-MTEB/DuRetrieval
184
  metrics:
185
  - type: map_at_1
186
+ value: 27.772000000000002
187
  - type: map_at_10
188
+ value: 84.734
189
  - type: map_at_100
190
+ value: 87.298
191
  - type: map_at_1000
192
+ value: 87.32900000000001
193
  - type: map_at_3
194
+ value: 59.431
195
  - type: map_at_5
196
+ value: 74.82900000000001
197
  - type: mrr_at_1
198
  value: 93.65
199
  - type: mrr_at_10
200
+ value: 95.568
201
  - type: mrr_at_100
202
+ value: 95.608
203
  - type: mrr_at_1000
204
+ value: 95.609
205
  - type: mrr_at_3
206
+ value: 95.267
207
  - type: mrr_at_5
208
+ value: 95.494
209
  - type: ndcg_at_1
210
  value: 93.65
211
  - type: ndcg_at_10
212
+ value: 90.794
213
  - type: ndcg_at_100
214
+ value: 92.88300000000001
215
  - type: ndcg_at_1000
216
+ value: 93.144
217
  - type: ndcg_at_3
218
+ value: 90.32
219
  - type: ndcg_at_5
220
+ value: 89.242
221
  - type: precision_at_1
222
  value: 93.65
223
  - type: precision_at_10
224
+ value: 42.9
225
  - type: precision_at_100
226
+ value: 4.835
227
  - type: precision_at_1000
228
+ value: 0.49
229
  - type: precision_at_3
230
+ value: 80.85
231
  - type: precision_at_5
232
+ value: 68.14
233
  - type: recall_at_1
234
+ value: 27.772000000000002
235
  - type: recall_at_10
236
+ value: 91.183
237
  - type: recall_at_100
238
+ value: 98.219
239
  - type: recall_at_1000
240
+ value: 99.55000000000001
241
  - type: recall_at_3
242
+ value: 60.911
243
  - type: recall_at_5
244
+ value: 78.31099999999999
245
  - type: main_score
246
+ value: 90.794
247
  task:
248
  type: Retrieval
249
  - dataset:
 
254
  type: C-MTEB/EcomRetrieval
255
  metrics:
256
  - type: map_at_1
257
+ value: 54.6
258
  - type: map_at_10
259
+ value: 64.742
260
  - type: map_at_100
261
+ value: 65.289
262
  - type: map_at_1000
263
+ value: 65.29700000000001
264
  - type: map_at_3
265
+ value: 62.183
266
  - type: map_at_5
267
+ value: 63.883
268
  - type: mrr_at_1
269
+ value: 54.6
270
  - type: mrr_at_10
271
+ value: 64.742
272
  - type: mrr_at_100
273
+ value: 65.289
274
  - type: mrr_at_1000
275
+ value: 65.29700000000001
276
  - type: mrr_at_3
277
+ value: 62.183
278
  - type: mrr_at_5
279
+ value: 63.883
280
  - type: ndcg_at_1
281
+ value: 54.6
282
  - type: ndcg_at_10
283
+ value: 69.719
284
  - type: ndcg_at_100
285
+ value: 72.148
286
  - type: ndcg_at_1000
287
+ value: 72.393
288
  - type: ndcg_at_3
289
+ value: 64.606
290
  - type: ndcg_at_5
291
+ value: 67.682
292
  - type: precision_at_1
293
+ value: 54.6
294
  - type: precision_at_10
295
+ value: 8.53
296
  - type: precision_at_100
297
+ value: 0.962
298
  - type: precision_at_1000
299
+ value: 0.098
300
  - type: precision_at_3
301
+ value: 23.867
302
  - type: precision_at_5
303
+ value: 15.82
304
  - type: recall_at_1
305
+ value: 54.6
306
  - type: recall_at_10
307
+ value: 85.3
308
  - type: recall_at_100
309
+ value: 96.2
310
  - type: recall_at_1000
311
+ value: 98.2
312
  - type: recall_at_3
313
+ value: 71.6
314
  - type: recall_at_5
315
+ value: 79.10000000000001
316
  - type: main_score
317
+ value: 69.719
318
  task:
319
  type: Retrieval
320
  - dataset:
 
325
  type: C-MTEB/Mmarco-reranking
326
  metrics:
327
  - type: map
328
+ value: 35.30260957061897
329
  - type: mrr
330
+ value: 34.098015873015875
331
  - type: main_score
332
+ value: 35.30260957061897
333
  task:
334
  type: Reranking
335
  - dataset:
 
340
  type: C-MTEB/MMarcoRetrieval
341
  metrics:
342
  - type: map_at_1
343
+ value: 69.51899999999999
344
  - type: map_at_10
345
+ value: 78.816
346
  - type: map_at_100
347
+ value: 79.08500000000001
348
  - type: map_at_1000
349
+ value: 79.091
350
  - type: map_at_3
351
+ value: 76.999
352
  - type: map_at_5
353
+ value: 78.194
354
  - type: mrr_at_1
355
+ value: 71.80499999999999
356
  - type: mrr_at_10
357
+ value: 79.29899999999999
358
  - type: mrr_at_100
359
+ value: 79.532
360
  - type: mrr_at_1000
361
+ value: 79.537
362
  - type: mrr_at_3
363
+ value: 77.703
364
  - type: mrr_at_5
365
+ value: 78.75999999999999
366
  - type: ndcg_at_1
367
+ value: 71.80499999999999
368
  - type: ndcg_at_10
369
+ value: 82.479
370
  - type: ndcg_at_100
371
+ value: 83.611
372
  - type: ndcg_at_1000
373
+ value: 83.76400000000001
374
  - type: ndcg_at_3
375
+ value: 79.065
376
  - type: ndcg_at_5
377
+ value: 81.092
378
  - type: precision_at_1
379
+ value: 71.80499999999999
380
  - type: precision_at_10
381
+ value: 9.91
382
  - type: precision_at_100
383
+ value: 1.046
384
  - type: precision_at_1000
385
  value: 0.106
386
  - type: precision_at_3
387
+ value: 29.727999999999998
388
  - type: precision_at_5
389
+ value: 18.908
390
  - type: recall_at_1
391
+ value: 69.51899999999999
392
  - type: recall_at_10
393
+ value: 93.24
394
  - type: recall_at_100
395
+ value: 98.19099999999999
396
  - type: recall_at_1000
397
+ value: 99.36500000000001
398
  - type: recall_at_3
399
+ value: 84.308
400
  - type: recall_at_5
401
+ value: 89.119
402
  - type: main_score
403
+ value: 82.479
404
  task:
405
  type: Retrieval
406
  - dataset:
 
413
  - type: map_at_1
414
  value: 57.8
415
  - type: map_at_10
416
+ value: 64.215
417
  - type: map_at_100
418
+ value: 64.78
419
  - type: map_at_1000
420
+ value: 64.81099999999999
421
  - type: map_at_3
422
+ value: 62.64999999999999
423
  - type: map_at_5
424
+ value: 63.57000000000001
425
  - type: mrr_at_1
426
  value: 58.099999999999994
427
  - type: mrr_at_10
428
+ value: 64.371
429
  - type: mrr_at_100
430
+ value: 64.936
431
  - type: mrr_at_1000
432
+ value: 64.96600000000001
433
  - type: mrr_at_3
434
+ value: 62.8
435
  - type: mrr_at_5
436
+ value: 63.739999999999995
437
  - type: ndcg_at_1
438
  value: 57.8
439
  - type: ndcg_at_10
440
+ value: 67.415
441
  - type: ndcg_at_100
442
+ value: 70.38799999999999
443
  - type: ndcg_at_1000
444
+ value: 71.229
445
  - type: ndcg_at_3
446
+ value: 64.206
447
  - type: ndcg_at_5
448
+ value: 65.858
449
  - type: precision_at_1
450
  value: 57.8
451
  - type: precision_at_10
452
+ value: 7.75
453
  - type: precision_at_100
454
+ value: 0.919
455
  - type: precision_at_1000
456
  value: 0.099
457
  - type: precision_at_3
458
+ value: 22.900000000000002
459
  - type: precision_at_5
460
+ value: 14.540000000000001
461
  - type: recall_at_1
462
  value: 57.8
463
  - type: recall_at_10
464
+ value: 77.5
465
  - type: recall_at_100
466
+ value: 91.9
467
  - type: recall_at_1000
468
+ value: 98.6
469
  - type: recall_at_3
470
+ value: 68.7
471
  - type: recall_at_5
472
+ value: 72.7
473
  - type: main_score
474
+ value: 67.415
475
  task:
476
  type: Retrieval
477
  - dataset:
 
482
  type: C-MTEB/T2Reranking
483
  metrics:
484
  - type: map
485
+ value: 69.06615146698508
486
  - type: mrr
487
+ value: 79.7588755091294
488
  - type: main_score
489
+ value: 69.06615146698508
490
  task:
491
  type: Reranking
492
  - dataset:
 
497
  type: C-MTEB/T2Retrieval
498
  metrics:
499
  - type: map_at_1
500
+ value: 28.084999999999997
501
  - type: map_at_10
502
+ value: 78.583
503
  - type: map_at_100
504
+ value: 82.14399999999999
505
  - type: map_at_1000
506
+ value: 82.204
507
  - type: map_at_3
508
+ value: 55.422000000000004
509
  - type: map_at_5
510
+ value: 67.973
511
  - type: mrr_at_1
512
+ value: 91.014
513
  - type: mrr_at_10
514
+ value: 93.381
515
  - type: mrr_at_100
516
+ value: 93.45400000000001
517
  - type: mrr_at_1000
518
+ value: 93.45599999999999
519
  - type: mrr_at_3
520
+ value: 92.99300000000001
521
  - type: mrr_at_5
522
+ value: 93.234
523
  - type: ndcg_at_1
524
+ value: 91.014
525
  - type: ndcg_at_10
526
+ value: 85.931
527
  - type: ndcg_at_100
528
+ value: 89.31
529
  - type: ndcg_at_1000
530
+ value: 89.869
531
  - type: ndcg_at_3
532
+ value: 87.348
533
  - type: ndcg_at_5
534
+ value: 85.929
535
  - type: precision_at_1
536
+ value: 91.014
537
  - type: precision_at_10
538
+ value: 42.495
539
  - type: precision_at_100
540
+ value: 5.029999999999999
541
  - type: precision_at_1000
542
  value: 0.516
543
  - type: precision_at_3
544
+ value: 76.248
545
  - type: precision_at_5
546
+ value: 63.817
547
  - type: recall_at_1
548
+ value: 28.084999999999997
549
  - type: recall_at_10
550
+ value: 84.88
551
  - type: recall_at_100
552
+ value: 95.902
553
  - type: recall_at_1000
554
+ value: 98.699
555
  - type: recall_at_3
556
+ value: 57.113
557
  - type: recall_at_5
558
+ value: 71.251
559
  - type: main_score
560
+ value: 85.931
561
  task:
562
  type: Retrieval
563
  - dataset:
 
568
  type: C-MTEB/VideoRetrieval
569
  metrics:
570
  - type: map_at_1
571
+ value: 66.4
572
  - type: map_at_10
573
+ value: 75.86
574
  - type: map_at_100
575
+ value: 76.185
576
  - type: map_at_1000
577
+ value: 76.188
578
  - type: map_at_3
579
+ value: 74.167
580
  - type: map_at_5
581
+ value: 75.187
582
  - type: mrr_at_1
583
+ value: 66.4
584
  - type: mrr_at_10
585
+ value: 75.86
586
  - type: mrr_at_100
587
+ value: 76.185
588
  - type: mrr_at_1000
589
+ value: 76.188
590
  - type: mrr_at_3
591
+ value: 74.167
592
  - type: mrr_at_5
593
+ value: 75.187
594
  - type: ndcg_at_1
595
+ value: 66.4
596
  - type: ndcg_at_10
597
+ value: 80.03099999999999
598
  - type: ndcg_at_100
599
+ value: 81.459
600
  - type: ndcg_at_1000
601
+ value: 81.527
602
  - type: ndcg_at_3
603
+ value: 76.621
604
  - type: ndcg_at_5
605
+ value: 78.446
606
  - type: precision_at_1
607
+ value: 66.4
608
  - type: precision_at_10
609
+ value: 9.29
610
  - type: precision_at_100
611
+ value: 0.992
612
  - type: precision_at_1000
613
  value: 0.1
614
  - type: precision_at_3
615
+ value: 27.900000000000002
616
  - type: precision_at_5
617
+ value: 17.62
618
  - type: recall_at_1
619
+ value: 66.4
620
  - type: recall_at_10
621
+ value: 92.9
622
  - type: recall_at_100
623
+ value: 99.2
624
  - type: recall_at_1000
625
+ value: 99.7
626
  - type: recall_at_3
627
+ value: 83.7
628
  - type: recall_at_5
629
+ value: 88.1
630
  - type: main_score
631
+ value: 80.03099999999999
632
  task:
633
  type: Retrieval
634
+ pipeline_tag: sentence-similarity
635
  tags:
636
+ - sentence-transformers
637
+ - feature-extraction
638
+ - sentence-similarity
639
  - mteb
640
  ---
641
+ -
642
+
643
+ # XYZ-embedding-zh
644
 
645
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1792 dimensional dense vector space and can be used for tasks like clustering or semantic search.
646
 
647
+ <!--- Describe your model here -->
648
 
649
+ ## Usage (Sentence-Transformers)
650
+
651
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
652
+
653
+ ```
654
  pip install -U sentence-transformers
655
  ```
656
+
657
+ Then you can use the model like this:
658
+
659
  ```python
660
  from sentence_transformers import SentenceTransformer
661
+ sentences = ["This is an example sentence", "Each sentence is converted"]
662
 
663
+ model = SentenceTransformer('fangxq/XYZ-embedding-zh')
 
 
 
 
 
 
 
664
  embeddings = model.encode(sentences)
665
+ print(embeddings)
666
+ ```
667
+
668
+
669
+
670
+ ## Evaluation Results
671
+
672
+ <!--- Describe how your model was evaluated -->
673
+
674
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
675
 
676
+
677
+
678
+ ## Full Model Architecture
679
+ ```
680
+ SentenceTransformer(
681
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
682
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
683
+ (2): Dense({'in_features': 1024, 'out_features': 1792, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
684
+ )
685
  ```
686
+
687
+ ## Citing & Authors
688
+