patrickvonplaten commited on
Commit
15bc8ce
·
1 Parent(s): aad7b2d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -30,14 +30,14 @@ The original model can be found under https://github.com/pytorch/fairseq/tree/ma
30
  To transcribe audio files the model can be used as a standalone acoustic model as follows:
31
 
32
  ```python
33
- from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForMaskedLM
34
  from datasets import load_dataset
35
  import soundfile as sf
36
  import torch
37
 
38
  # load model and tokenizer
39
  tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
40
- model = Wav2Vec2ForMaskedLM.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
41
 
42
  # define function to read in sound file
43
  def map_to_array(batch):
@@ -66,7 +66,7 @@ To transcribe audio files the model can be used as a standalone acoustic model a
66
 
67
  ```python
68
  from datasets import load_dataset
69
- from transformers import Wav2Vec2ForMaskedLM, Wav2Vec2Tokenizer
70
  import soundfile as sf
71
  import torch
72
  from jiwer import wer
@@ -74,7 +74,7 @@ from jiwer import wer
74
 
75
  librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
76
 
77
- model = Wav2Vec2ForMaskedLM.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda")
78
  tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h-lv60-self")
79
 
80
  def map_to_array(batch):
 
30
  To transcribe audio files the model can be used as a standalone acoustic model as follows:
31
 
32
  ```python
33
+ from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
34
  from datasets import load_dataset
35
  import soundfile as sf
36
  import torch
37
 
38
  # load model and tokenizer
39
  tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
40
+ model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
41
 
42
  # define function to read in sound file
43
  def map_to_array(batch):
 
66
 
67
  ```python
68
  from datasets import load_dataset
69
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
70
  import soundfile as sf
71
  import torch
72
  from jiwer import wer
 
74
 
75
  librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
76
 
77
+ model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda")
78
  tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h-lv60-self")
79
 
80
  def map_to_array(batch):