File size: 3,603 Bytes
54f8052
 
0852d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54f8052
8de6050
 
 
 
 
 
15f40b8
8de6050
 
 
 
 
 
 
 
 
 
 
 
 
9f06a93
8de6050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
license: mit
language:
- af
- am
- ar
- as
- az
- be
- bn
- bs
- bg
- ca
- cs
- zh
- cy
- da
- de
- el
- en
- et
- fi
- fr
- or
- om
- ga
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- ig
- id
- is
- it
- jv
- ja
- kn
- ka
- kk
- mn
- km
- ky
- ko
- lo
- ln
- lt
- lb
- lg
- lv
- ml
- mr
- mk
- mt
- mi
- my
- nl
- nb
- ne
- ny
- oc
- pa
- ps
- fa
- pl
- pt
- ro
- ru
- sk
- sl
- sn
- sd
- so
- es
- sr
- sv
- sw
- ta
- te
- tg
- tl
- th
- tr
- uk
- ur
- uz
- vi
- wo
- xh
- yo
- ms
- zu
- ary
- arz
- yue
- kea
inference: false
---
# W2v-BERT 2.0 speech encoder

We are open-sourcing our Conformer-based [W2v-BERT 2.0 speech encoder](#w2v-bert-20-speech-encoder) as described in Section 3.2.1 of the [paper](https://arxiv.org/pdf/2312.05187.pdf), which is at the core of our Seamless models.

| Model Name        | #params | checkpoint                                                                                                                                                                                                                                                                                                                                                                 |
| ----------------- | ------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| W2v-BERT 2.0 | 600M    | [checkpoint](https://huggingface.co/reach-vb/conformer-shaw/resolve/main/conformer_shaw.pt)

Scaling data size for self-supervised pre-training has been empirically proven to be a relatively cheap, yet effective way to improve speech representation quality (Zhang et al., 2023a). Following such direction, we continued to add more unlabeled speech data, increasing the amount of our pre-training data from 1M hours (Seamless Communication et al., 2023) to approximately 4.5M hours.
Besides leveraging more pre-training data, we removed the random-projection quantizer (RPQ) (Chiu et al., 2022) and its associated loss previously incorporated in SeamlessM4T v1 (Seamless Communication et al., 2023).4 Akin to v1, the v2 w2v-BERT 2.0 comprises 24 Conformer layers (Gulati et al., 2020) with approximately 600M parameters and the same pre-training hyperparameters.


Here's how you should do a forward pass through the speech encoder:

```python
import torch

from fairseq2.data.audio import AudioDecoder, WaveformToFbankConverter
from fairseq2.memory import MemoryBlock
from fairseq2.nn.padding import get_seqs_and_padding_mask
from fairseq2.data import Collater
from pathlib import Path
from seamless_communication.models.conformer_shaw import load_conformer_shaw_model


audio_wav_path, device, dtype = ...
audio_decoder = AudioDecoder(dtype=torch.float32, device=device)
fbank_converter = WaveformToFbankConverter(
    num_mel_bins=80,
    waveform_scale=2**15,
    channel_last=True,
    standardize=True,
    device=device,
    dtype=dtype,
)
collater = Collater(pad_value=1)

model = load_conformer_shaw_model("conformer_shaw", device=device, dtype=dtype)
model.eval()

with Path(audio_wav_path).open("rb") as fb:
    block = MemoryBlock(fb.read())

decoded_audio = audio_decoder(block)
src = collater(fbank_converter(decoded_audio))["fbank"]
seqs, padding_mask = get_seqs_and_padding_mask(src)

with torch.inference_mode():
  seqs, padding_mask = model.encoder_frontend(seqs, padding_mask)
  seqs, padding_mask = model.encoder(seqs, padding_mask)
```