File size: 4,786 Bytes
54f8052
 
0852d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54f8052
8de6050
 
11efc4b
8de6050
da985ba
 
8de6050
 
15f40b8
8de6050
da985ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de6050
da985ba
 
 
 
8de6050
da985ba
 
 
 
 
 
8de6050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da985ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
license: mit
language:
- af
- am
- ar
- as
- az
- be
- bn
- bs
- bg
- ca
- cs
- zh
- cy
- da
- de
- el
- en
- et
- fi
- fr
- or
- om
- ga
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- ig
- id
- is
- it
- jv
- ja
- kn
- ka
- kk
- mn
- km
- ky
- ko
- lo
- ln
- lt
- lb
- lg
- lv
- ml
- mr
- mk
- mt
- mi
- my
- nl
- nb
- ne
- ny
- oc
- pa
- ps
- fa
- pl
- pt
- ro
- ru
- sk
- sl
- sn
- sd
- so
- es
- sr
- sv
- sw
- ta
- te
- tg
- tl
- th
- tr
- uk
- ur
- uz
- vi
- wo
- xh
- yo
- ms
- zu
- ary
- arz
- yue
- kea
inference: false
---
# W2v-BERT 2.0 speech encoder

We are open-sourcing our Conformer-based [W2v-BERT 2.0 speech encoder](#w2v-bert-20-speech-encoder) as described in Section 4.1 of the [paper](https://arxiv.org/abs/2308.11596), which is at the core of our Seamless models.

This model was pre-trained on 4.5M hours of unlabeled audio data covering more than 143 languages. It requires finetuning to be used for downstream tasks such as Automatic Speech Recognition (ASR), or Audio Classification.

| Model Name        | #params | checkpoint                                                                                                                                                                                                                                                                                                                                                                 |
| ----------------- | ------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| W2v-BERT 2.0 | 600M    | [checkpoint](https://huggingface.co/reach-vb/conformer-shaw/resolve/main/conformer_shaw.pt)

**This model and its training are supported by 🤗 Transformers, more on it in the [docs](https://huggingface.co/docs/transformers/main/en/model_doc/wav2vec2-bert).**


# 🤗 Transformers usage

This is a bare checkpoint without any modeling head, and thus requires finetuning to be used for downstream tasks such as ASR. You can however use it to extract audio embeddings from the top layer with this code snippet:

```python
from transformers import AutoFeatureExtractor, Wav2Vec2BertModel
import torch
from datasets import load_dataset

dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
dataset = dataset.sort("id")
sampling_rate = dataset.features["audio"].sampling_rate

processor = AutoProcessor.from_pretrained("facebook/w2v-bert-2.0")
model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0")

# audio file is decoded on the fly
inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs)
```

To learn more about the model use, refer to the following resources:
- [its docs](https://huggingface.co/docs/transformers/main/en/model_doc/wav2vec2-bert)
- [a blog post showing how to fine-tune it on Mongolian ASR](https://huggingface.co/blog/fine-tune-w2v2-bert)
- [a training script example](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py)


# Seamless Communication usage

This model can be used in [Seamless Communication](https://github.com/facebookresearch/seamless_communication), where it was released.
 
Here's how to make a forward pass through the voice encoder, after having completed the [installation steps](https://github.com/facebookresearch/seamless_communication?tab=readme-ov-file#installation):

```python
import torch

from fairseq2.data.audio import AudioDecoder, WaveformToFbankConverter
from fairseq2.memory import MemoryBlock
from fairseq2.nn.padding import get_seqs_and_padding_mask
from pathlib import Path
from seamless_communication.models.conformer_shaw import load_conformer_shaw_model


audio_wav_path, device, dtype = ...
audio_decoder = AudioDecoder(dtype=torch.float32, device=device)
fbank_converter = WaveformToFbankConverter(
    num_mel_bins=80,
    waveform_scale=2**15,
    channel_last=True,
    standardize=True,
    device=device,
    dtype=dtype,
)
collater = Collater(pad_value=1)

model = load_conformer_shaw_model("conformer_shaw", device=device, dtype=dtype)
model.eval()

with Path(audio_wav_path).open("rb") as fb:
    block = MemoryBlock(fb.read())

decoded_audio = audio_decoder(block)
src = collater(fbank_converter(decoded_audio))["fbank"]
seqs, padding_mask = get_seqs_and_padding_mask(src)

with torch.inference_mode():
  seqs, padding_mask = model.encoder_frontend(seqs, padding_mask)
  seqs, padding_mask = model.encoder(seqs, padding_mask)
```