Transformers
PyTorch
English
rag
Inference Endpoints
julien-c HF staff commited on
Commit
bdeb4ef
·
1 Parent(s): 798dbab

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/facebook/rag-token-base/README.md

Files changed (1) hide show
  1. README.md +57 -0
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ datasets:
5
+ - wiki_dpr
6
+ thumbnail: https://huggingface.co/front/thumbnails/facebook.png
7
+ ---
8
+ ## RAG
9
+
10
+ This is a non-finetuned version of the RAG-Token model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf)
11
+ by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.
12
+
13
+ Rag consits of a *question encoder*, *retriever* and a *generator*. The retriever should be a `RagRetriever` instance. The *question encoder* can be any model that can be loaded with `AutoModel` and the *generator* can be any model that can be loaded with `AutoModelForSeq2SeqLM`.
14
+
15
+ This model is a non-finetuned RAG-Token model and was created as follows:
16
+
17
+ ```python
18
+ from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration, AutoTokenizer
19
+
20
+ model = RagTokenForGeneration.from_pretrained_question_encoder_generator("facebook/dpr-question_encoder-single-nq-base", "facebook/bart-large")
21
+
22
+ question_encoder_tokenizer = AutoTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
23
+ generator_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
24
+
25
+ tokenizer = RagTokenizer(question_encoder_tokenizer, generator_tokenizer)
26
+ model.config.use_dummy_dataset = True
27
+ model.config.index_name = "exact"
28
+ retriever = RagRetriever(model.config, question_encoder_tokenizer, generator_tokenizer)
29
+
30
+ model.save_pretrained("./")
31
+ tokenizer.save_pretrained("./")
32
+ retriever.save_pretrained("./")
33
+ ```
34
+
35
+ Note that the model is *uncased* so that all capital input letters are converted to lower-case.
36
+
37
+ ## Usage:
38
+
39
+ *Note*: the model uses the *dummy* retriever as a default. Better results are obtained by using the full retriever,
40
+ by setting `config.index_name="legacy"` and `config.use_dummy_dataset=False`.
41
+ The model can be fine-tuned as follows:
42
+
43
+ ```python
44
+ from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
45
+
46
+ tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
47
+ retriever = RagRetriever.from_pretrained("facebook/rag-token-base")
48
+ model = RagTokenForGeneration.from_pretrained("facebook/rag-token-base", retriever=retriever)
49
+
50
+ input_dict = tokenizer.prepare_seq2seq_batch("who holds the record in 100m freestyle", "michael phelps", return_tensors="pt")
51
+
52
+ outputs = model(input_dict["input_ids"], labels=input_dict["labels"])
53
+
54
+ loss = outputs.loss
55
+
56
+ # train on loss
57
+ ```