Image Feature Extraction
Transformers
Safetensors
ijepa
Inference Endpoints
jmtzt commited on
Commit
007cb2b
1 Parent(s): 5dcf902

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -0
README.md CHANGED
@@ -29,6 +29,30 @@ The model correctly captures positional uncertainty and produces high-level obje
29
 
30
  I-JEPA can be used for image classification or feature extraction. This checkpoint in specific is intended for **Feature Extraction**.
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  ### BibTeX entry and citation info
34
  If you use I-JEPA or this code in your work, please cite:
 
29
 
30
  I-JEPA can be used for image classification or feature extraction. This checkpoint in specific is intended for **Feature Extraction**.
31
 
32
+ ## How to use
33
+
34
+ Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
35
+
36
+ ```python
37
+ import requests
38
+
39
+ from PIL import Image
40
+ from transformers import AutoProcessor, IJepaForImageClassification
41
+
42
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
43
+ image = Image.open(requests.get(url, stream=True).raw)
44
+
45
+ model_id = "jmtzt/ijepa_vith14_22k"
46
+ processor = AutoProcessor.from_pretrained(model_id)
47
+ model = IJepaForImageClassification.from_pretrained(model_id)
48
+
49
+ inputs = processor(images=image, return_tensors="pt")
50
+ outputs = model(**inputs)
51
+ logits = outputs.logits
52
+ # model predicts one of the 1000 ImageNet classes
53
+ predicted_class_idx = logits.argmax(-1).item()
54
+ print("Predicted class:", model.config.id2label[predicted_class_idx])
55
+ ```
56
 
57
  ### BibTeX entry and citation info
58
  If you use I-JEPA or this code in your work, please cite: