File size: 1,838 Bytes
fe55bfe d698733 fe55bfe d698733 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
metrics:
- F1
- Precision
- Recall
- ROC-AUC
---
# ARespiratory audio classification model
This model classifies respiratory audio recordings from the [ICBHI 2017 Challenge](https://bhichallenge.med.auth.gr/ICBHI_2017_Challenge) dataset into **crackles**, **wheezes**, **both**, or **none** (multi-label classification). It utilizes the [AST encoder](https://huggingface.co/MIT/ast-finetuned-audioset-14-14-0.443) (`MIT/ast-finetuned-audioset-14-14-0.443`) with a lightweight classification head.
The model has been pushed to the Hub using the [PyTorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration.
---
## **Dataset**
- **Source:** [ICBHI 2017 Challenge](https://bhichallenge.med.auth.gr/ICBHI_2017_Challenge)
---
## **Performance metrics**
| **Label** | **F1** | **Precision** | **Recall** | **AUC** |
|--------------|---------|---------------|------------|-----------|
| **Crackle** | 0.6756 | 0.6147 | 0.7500 | 0.7033 |
| **Wheeze** | 0.4853 | 0.6565 | 0.3849 | 0.8031 |
| **Macro Avg**| 0.5805 | 0.6356 | 0.5674 | 0.7532 |
---
## **Usage**
Run inference using [`s05_inference.py`](https://github.com/fabiocat93/icbhi_2017_challenge/blob/main/src/code/s05_inference.py).
Ensure you install the necessary dependencies. For setup instructions, please see the [documentation](https://github.com/fabiocat93/icbhi_2017_challenge).
---
## **Notes**
For additional details, check the [documentation notes](https://github.com/fabiocat93/icbhi_2017_challenge/edit/main/docs/notes.md).
---
## **Contact**
For any questions or further information, feel free to reach out via email: **[[email protected]](mailto:[email protected])**. |