Model save
Browse files
README.md
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
---
|
2 |
-
base_model:
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
6 |
- accuracy
|
|
|
|
|
7 |
model-index:
|
8 |
- name: logs
|
9 |
results: []
|
@@ -14,10 +16,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
# logs
|
16 |
|
17 |
-
This model is a fine-tuned version of [
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss:
|
20 |
-
- Accuracy: 0.
|
|
|
|
|
|
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -37,8 +42,8 @@ More information needed
|
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
- learning_rate: 2e-05
|
40 |
-
- train_batch_size:
|
41 |
-
- eval_batch_size:
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
@@ -46,17 +51,17 @@ The following hyperparameters were used during training:
|
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
-
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
|
56 |
|
57 |
### Framework versions
|
58 |
|
59 |
-
- Transformers 4.
|
60 |
- Pytorch 2.2.1+cu121
|
61 |
- Datasets 2.19.0
|
62 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
+
base_model: microsoft/codebert-base
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
model-index:
|
10 |
- name: logs
|
11 |
results: []
|
|
|
16 |
|
17 |
# logs
|
18 |
|
19 |
+
This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0405
|
22 |
+
- Accuracy: 0.9950
|
23 |
+
- Precision: 0.9950
|
24 |
+
- Recall: 0.9950
|
25 |
+
- F1 Score: 0.9950
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
56 |
+
| 0.1436 | 1.0 | 907 | 0.0851 | 0.9829 | 0.9829 | 0.9829 | 0.9829 |
|
57 |
+
| 0.0737 | 2.0 | 1814 | 0.0548 | 0.9915 | 0.9915 | 0.9915 | 0.9915 |
|
58 |
+
| 0.0216 | 3.0 | 2721 | 0.0469 | 0.9917 | 0.9918 | 0.9917 | 0.9917 |
|
59 |
+
| 0.0143 | 4.0 | 3628 | 0.0405 | 0.9950 | 0.9950 | 0.9950 | 0.9950 |
|
60 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
+
- Transformers 4.40.0
|
65 |
- Pytorch 2.2.1+cu121
|
66 |
- Datasets 2.19.0
|
67 |
+
- Tokenizers 0.19.1
|