File size: 2,135 Bytes
a7e74f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilbert-amazon-shoe-reviews_ubuntu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-amazon-shoe-reviews_ubuntu
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9573
- Accuracy: 0.5726
- F1: [0.62998761 0.45096564 0.49037037 0.55640244 0.73547094]
- Precision: [0.62334478 0.45704118 0.47534706 0.5858748 0.72102161]
- Recall: [0.63677355 0.4450495 0.5063743 0.52975327 0.75051125]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------------------------------------:|:--------------------------------------------------------:|
| 0.9617 | 1.0 | 2813 | 0.9573 | 0.5726 | [0.62998761 0.45096564 0.49037037 0.55640244 0.73547094] | [0.62334478 0.45704118 0.47534706 0.5858748 0.72102161] | [0.63677355 0.4450495 0.5063743 0.52975327 0.75051125] |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1
|