morphemizer / tokenizer.py
pasha
Version updated
b4d132c
import os
import json
import re
import string
from typing import List
from tokenizers import pre_tokenizers, decoders, NormalizedString, PreTokenizedString, AddedToken
from transformers import PreTrainedTokenizerFast
from rumorpheme import RuMorphemeModel, labels_to_morphemes
DEFAULT_MODEL_NAME = "evilfreelancer/ruMorpheme-v0.2"
END, BEGIN, PAD, UNKNOWN, CAP, ALL_CAPS = 0, 1, 2, 3, 4, 5
SYSTEM, USER, ASSISTANT, FUNCTION_CALL, FUNCTION_RESPONSE = 6, 7, 8, 9, 10
SPACE, NEWLINE, TAB = 11, 12, 13
AUXILIARY = [
"</s>", "<s>", "<pad>", "<unk>", "<cap>", "<all_caps>",
"system", "user", "assistant", "function_call", "function_response",
" ", "\n", "\t"
]
NUMBERS = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
LETTERS_CYRILLIC = list(map(chr, range(ord('а'), ord('я') + 1)))
LETTERS_LATIN = list(string.ascii_lowercase)
class RuMorphemePreTokenizer:
"""
Pre-tokenizer for RuMorpheme model.
Splits on spaces, newlines, and tabs, including these as tokens.
Then, applies morpheme splitting to non-space tokens.
"""
def __init__(self, model_name: str = DEFAULT_MODEL_NAME):
self.model = RuMorphemeModel.from_pretrained(model_name)
self.model.eval()
def pre_tokenize(self, pretok: PreTokenizedString):
# First, split on spaces (including newlines and tabs) and add them as tokens
pretok.split(self.split_on_spaces)
# Apply morpheme or character-level splitting to non-space tokens
pretok.split(self.morpheme_or_char_split)
def split_on_spaces(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]:
"""
Splits on spaces, newlines, and tabs, including these as tokens.
"""
text = str(normalized_string)
splits = [
NormalizedString(match.group())
for match in re.finditer(r'\s+|\S+', text)
]
# Convert newlines and tabs to tokens
for idx, split in enumerate(splits):
if split == "\n":
splits[idx] = NormalizedString(AUXILIARY[NEWLINE])
elif split == "\t":
splits[idx] = NormalizedString(AUXILIARY[TAB])
return splits
def morpheme_or_char_split(self, i: int, normalized_string: NormalizedString) -> List[NormalizedString]:
"""
Attempts to split the token into morphemes. If the token starts with "UNKNOWN/",
splits it into individual characters.
"""
word = str(normalized_string)
# If the token is whitespace or digits, return as is
if word.isspace() or word.isdigit():
return [normalized_string]
# Ignore tokens that are only punctuation or non-alphabetical
if not any(c.isalpha() for c in word):
return [normalized_string]
# Detect capitalization and add relevant token if necessary
cap_token = None
if word[0].isupper():
cap_token = NormalizedString(AUXILIARY[CAP])
if len(word) > 1 and word.isupper():
cap_token = NormalizedString(AUXILIARY[ALL_CAPS])
# Convert word to lowercase for morpheme splitting
word_lower = word.lower()
# Make predictions to get morphemes
all_predictions, all_log_probs = self.model.predict([word_lower])
morphs, morph_types, _ = labels_to_morphemes(word_lower, all_predictions[0], all_log_probs[0])
# Handle unknown tokens by splitting into characters
morpheme_tokens = []
for morph, morph_type in zip(morphs, morph_types):
if morph_type == "UNKNOWN":
# Split unknown morpheme into characters
char_tokens = [NormalizedString(char) for char in morph]
morpheme_tokens.extend(char_tokens)
else:
# Add as a single morpheme token
morpheme_tokens.append(NormalizedString(f"{morph_type}/{morph}"))
# Insert capitalization token if needed
if cap_token:
return [cap_token] + morpheme_tokens
else:
return morpheme_tokens
class RuMorphemeDecoder:
"""
Custom decoder for RuMorpheme model, it removes morph_type prefix from tokens and keeps spaces.
"""
def decode_chain(self, tokens: List[str]) -> List[str]:
"""
tokenizer.decode function calls this function
"""
decoded_tokens = []
capitalize_next = False
uppercase_next = False
for token in tokens:
# Handle capitalization tokens
if token == AUXILIARY[CAP]:
capitalize_next = True
continue
elif token == AUXILIARY[ALL_CAPS]:
uppercase_next = True
continue
# If token is a space, keep it as is
if token.isspace():
decoded_tokens.append(token)
else:
# Remove morph_type prefix if present
if '/' in token:
_, morph = token.split('/', 1)
else:
morph = token
# Apply capitalization if needed
if uppercase_next:
morph = morph.upper()
uppercase_next = False
elif capitalize_next:
morph = morph.capitalize()
capitalize_next = False
decoded_tokens.append(morph)
return decoded_tokens
class RuMorphemeTokenizerFast(PreTrainedTokenizerFast):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# If pre-tokenizer nodel is not specified, use the default
self.model_name = kwargs.get('model_name')
if kwargs.get('model_name') is None:
self.model_name: str = DEFAULT_MODEL_NAME
# Complete initialization
self.init_backend_tokenizer()
def init_backend_tokenizer(self):
# Custom pre-tokenizer
self.backend_tokenizer.pre_tokenizer = pre_tokenizers.Sequence([
pre_tokenizers.Punctuation(),
pre_tokenizers.Digits(individual_digits=True),
pre_tokenizers.PreTokenizer.custom(RuMorphemePreTokenizer(self.model_name))
])
# Custom decoder
self.backend_tokenizer.decoder = decoders.Decoder.custom(RuMorphemeDecoder())
def save_pretrained(self, save_directory, **kwargs):
# Temporarily remove the custom pre-tokenizer and decoder before saving
original_pre_tokenizer = self.backend_tokenizer.pre_tokenizer
original_decoder = self.backend_tokenizer.decoder
self.backend_tokenizer.pre_tokenizer = None
self.backend_tokenizer.decoder = None
# Save the tokenizer using the parent method
super().save_pretrained(save_directory, **kwargs)
# Re-attach the custom pre-tokenizer and decoder
self.backend_tokenizer.pre_tokenizer = original_pre_tokenizer
self.backend_tokenizer.decoder = original_decoder
# Save the tokenizer class name in tokenizer_config.json
tokenizer_config_file = os.path.join(save_directory, 'tokenizer_config.json')
if os.path.isfile(tokenizer_config_file):
with open(tokenizer_config_file, 'r', encoding='utf-8') as f:
tokenizer_config = json.load(f)
else:
tokenizer_config = {}
# Correctly specify the tokenizer_class with module name
tokenizer_config['tokenizer_class'] = "RuMorphemeTokenizerFast"
tokenizer_config['use_fast'] = True
tokenizer_config['auto_map'] = {"AutoTokenizer": ["", "tokenizer.RuMorphemeTokenizerFast"]}
with open(tokenizer_config_file, 'w', encoding='utf-8') as f:
json.dump(tokenizer_config, f, ensure_ascii=False)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
# Load the tokenizer using the parent method
tokenizer = super(RuMorphemeTokenizerFast, cls).from_pretrained(
pretrained_model_name_or_path, *init_inputs, **kwargs
)
# If pre-tokenizer nodel is not specified, use the default
model_name = kwargs.get('model_name')
if kwargs.get('model_name') is None:
model_name: str = DEFAULT_MODEL_NAME
# Custom pre-tokenizer
tokenizer.backend_tokenizer.pre_tokenizer = pre_tokenizers.Sequence([
pre_tokenizers.Punctuation(),
pre_tokenizers.Digits(individual_digits=True),
pre_tokenizers.PreTokenizer.custom(RuMorphemePreTokenizer(model_name))
])
# Custom decoder
tokenizer.backend_tokenizer.decoder = decoders.Decoder.custom(RuMorphemeDecoder())
return tokenizer