Eugene Siow commited on
Commit
a16c423
·
1 Parent(s): f826388

Initial commit.

Browse files
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - image-super-resolution
5
+ datasets:
6
+ - div2k
7
+ metrics:
8
+ - pnsr
9
+ - ssim
10
+ ---
11
+ # Multi-scale Residual Network for Image Super-Resolution (MSRN)
12
+ MSRN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Multi-scale Residual Network for Image Super-Resolution](https://openaccess.thecvf.com/content_ECCV_2018/html/Juncheng_Li_Multi-scale_Residual_Network_ECCV_2018_paper.html) by Li et al. (2018) and first released in [this repository](https://github.com/MIVRC/MSRN-PyTorch).
13
+
14
+ The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2.
15
+
16
+ ![Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 4](images/msrn_4_4_compare.png "Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 4")
17
+ ## Model description
18
+ The MSRN model proposes a feature extraction structure called the multi-scale residual block. This module can "adaptively detect image features at different scales" and "exploit the potential features of the image".
19
+
20
+ This model also applies the balanced attention (BAM) method invented by [Wang et al. (2021)](https://arxiv.org/abs/2104.07566) to further improve the results.
21
+ ## Intended uses & limitations
22
+ You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset.
23
+ ### How to use
24
+ The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library:
25
+ ```bash
26
+ pip install super-image
27
+ ```
28
+ Here is how to use a pre-trained model to upscale your image:
29
+ ```python
30
+ from super_image import MsrnModel, ImageLoader
31
+ from PIL import Image
32
+ import requests
33
+
34
+ url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg'
35
+ image = Image.open(requests.get(url, stream=True).raw)
36
+
37
+ model = MsrnModel.from_pretrained('eugenesiow/msrn-bam', scale=2) # scale 2, 3 and 4 models available
38
+ inputs = ImageLoader.load_image(image)
39
+ preds = model(inputs)
40
+
41
+ ImageLoader.save_image(preds, './scaled_2x.png') # save the output 2x scaled image to `./scaled_2x.png`
42
+ ImageLoader.save_compare(inputs, preds, './scaled_2x_compare.png') # save an output comparing the super-image with a bicubic scaling
43
+ ```
44
+ ## Training data
45
+ The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://data.vision.ee.ethz.ch/cvl/DIV2K/), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900).
46
+ ## Training procedure
47
+ ### Preprocessing
48
+ We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566).
49
+ Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times.
50
+ During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches.
51
+ Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image.
52
+
53
+ The following code provides some helper functions to preprocess the data.
54
+ ```python
55
+ from super_image.data import EvalDataset, TrainAugmentDataset, DatasetBuilder
56
+
57
+ DatasetBuilder.prepare(
58
+ base_path='./DIV2K/DIV2K_train_HR',
59
+ output_path='./div2k_4x_train.h5',
60
+ scale=4,
61
+ do_augmentation=True
62
+ )
63
+ DatasetBuilder.prepare(
64
+ base_path='./DIV2K/DIV2K_val_HR',
65
+ output_path='./div2k_4x_val.h5',
66
+ scale=4,
67
+ do_augmentation=False
68
+ )
69
+ train_dataset = TrainAugmentDataset('./div2k_4x_train.h5', scale=4)
70
+ val_dataset = EvalDataset('./div2k_4x_val.h5')
71
+ ```
72
+ ### Pretraining
73
+ The model was trained on GPU. The training code is provided below:
74
+ ```python
75
+ from super_image import Trainer, TrainingArguments, MsrnModel, MsrnConfig
76
+
77
+ training_args = TrainingArguments(
78
+ output_dir='./results', # output directory
79
+ num_train_epochs=1000, # total number of training epochs
80
+ )
81
+
82
+ config = MsrnConfig(
83
+ scale=4, # train a model to upscale 4x
84
+ bam=True, # apply balanced attention to the network
85
+ supported_scales=[2, 3, 4],
86
+ )
87
+ model = MsrnModel(config)
88
+
89
+ trainer = Trainer(
90
+ model=model, # the instantiated model to be trained
91
+ args=training_args, # training arguments, defined above
92
+ train_dataset=train_dataset, # training dataset
93
+ eval_dataset=val_dataset # evaluation dataset
94
+ )
95
+
96
+ trainer.train()
97
+ ```
98
+ ## Evaluation results
99
+ The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm).
100
+
101
+ Evaluation datasets include:
102
+ - Set5 - [Bevilacqua et al. (2012)](http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html)
103
+ - Set14 - [Zeyde et al. (2010)](https://sites.google.com/site/romanzeyde/research-interests)
104
+ - BSD100 - [Martin et al. (2001)](https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/)
105
+ - Urban100 - [Huang et al. (2015)](https://sites.google.com/site/jbhuang0604/publications/struct_sr)
106
+
107
+ The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline.
108
+
109
+ |Dataset |Scale |Bicubic |msrn-bam |
110
+ |--- |--- |--- |--- |
111
+ |Set5 |2x |33.64/0.9292 |**38.023705/0.960794** |
112
+ |Set5 |3x |30.39/0.8678 |**35.155403/0.940999** |
113
+ |Set5 |4x |28.42/0.8101 |**32.263668/0.89554** |
114
+ |Set14 |2x |30.22/0.8683 |**33.635643/0.917744** |
115
+ |Set14 |3x |27.53/0.7737 |**30.974932/0.857354** |
116
+ |Set14 |4x |25.99/0.7023 |**28.660543/0.782889** |
117
+ |BSD100 |2x |29.55/0.8425 |**32.208752/0.899763** |
118
+ |BSD100 |3x |27.20/0.7382 |**29.668056/0.820912** |
119
+ |BSD100 |4x |25.96/0.6672 |**27.614033/0.736893** |
120
+ |Urban100 |2x |26.66/0.8408 |**32.084557/0.927621** |
121
+ |Urban100 |3x | |**29.314505/0.873682** |
122
+ |Urban100 |4x |23.14/0.6573 |**26.100685/0.785711** |
123
+
124
+ ![Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2](images/msrn_2_4_compare.png "Comparing Bicubic upscaling against the models x2 upscaling on Set5 Image 2")
125
+
126
+ ## BibTeX entry and citation info
127
+ ```bibtex
128
+ @misc{wang2021bam,
129
+ title={BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution},
130
+ author={Fanyi Wang and Haotian Hu and Cheng Shen},
131
+ year={2021},
132
+ eprint={2104.07566},
133
+ archivePrefix={arXiv},
134
+ primaryClass={eess.IV}
135
+ }
136
+ ```
137
+
138
+ ```bibtex
139
+ @InProceedings{Li_2018_ECCV,
140
+ author = {Li, Juncheng and Fang, Faming and Mei, Kangfu and Zhang, Guixu},
141
+ title = {Multi-scale Residual Network for Image Super-Resolution},
142
+ booktitle = {The European Conference on Computer Vision (ECCV)},
143
+ month = {September},
144
+ year = {2018}
145
+ }
146
+ ```
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "eugenesiow/msrn-bam",
3
+ "data_parallel": true,
4
+ "model_type": "MSRN",
5
+ "bam": true,
6
+ "n_feats": 64,
7
+ "n_blocks": 8,
8
+ "rgb_range": 255,
9
+ "supported_scales": [2,3,4]
10
+ }
images/msrn_2_4_compare.png ADDED
images/msrn_4_4_compare.png ADDED
pytorch_model_2x.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cab3f5885433b1871da3e061af773a65cb59f1aa58ca5d14be3e5ef01dec8e5
3
+ size 23786629
pytorch_model_3x.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84a5c6b9993b0bfde05bba2aea52d45be7d6333e9ab2cd9e6fe64b452da0bdba
3
+ size 24525189
pytorch_model_4x.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1182755427e413d8914c9833b44d02e30653998fc01a7876f48f21c8247105e7
3
+ size 24378241