jrzhang commited on
Commit
0aa04ca
verified
1 Parent(s): 14ea436

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -166
README.md CHANGED
@@ -4,201 +4,89 @@ language:
4
  - en
5
  base_model:
6
  - Qwen/Qwen2.5-1.5B-Instruct
 
 
 
 
7
  library_name: transformers
8
- tags:
9
- - geometry
10
  ---
11
- # Model Card for Model ID
12
 
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
- This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
16
 
17
  ## Model Details
18
 
19
  ### Model Description
20
 
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
 
 
24
 
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
 
33
  ### Model Sources [optional]
34
 
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
 
41
  ## Uses
42
 
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
 
174
- [More Information Needed]
175
 
176
- ## Citation [optional]
 
 
177
 
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
 
180
- **BibTeX:**
181
 
182
- [More Information Needed]
 
 
 
183
 
184
- **APA:**
185
 
186
- [More Information Needed]
187
 
188
- ## Glossary [optional]
 
 
 
 
189
 
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
 
192
- [More Information Needed]
193
 
194
- ## More Information [optional]
195
 
196
- [More Information Needed]
197
 
198
- ## Model Card Authors [optional]
 
 
 
 
 
 
199
 
200
- [More Information Needed]
201
 
202
- ## Model Card Contact
203
 
204
- [More Information Needed]
 
 
 
 
 
 
 
 
 
4
  - en
5
  base_model:
6
  - Qwen/Qwen2.5-1.5B-Instruct
7
+ - laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup
8
+ pipeline_tag: question-answering
9
+ metrics:
10
+ - accuracy
11
  library_name: transformers
 
 
12
  ---
13
+ # Model Card for Euclid-convnext-large
14
 
15
+ A multimodal large language models specifically trained for strong low-level geometric perception.
 
 
16
 
17
  ## Model Details
18
 
19
  ### Model Description
20
 
21
+ Euclid is trained on 1.6M synthetic geometry images with high-fidelity question-answer pairs using a curriculum learning approach.
 
22
 
23
+ It combines a ConvNeXt visual encoder with a Qwen-2.5 language model, connected through a 2-layer MLP multimodal connector.
24
 
 
 
 
 
 
 
 
25
 
26
  ### Model Sources [optional]
27
 
28
+ - **Repository:** https://github.com/euclid-multimodal/Euclid
29
+ - **Paper:** [Paper Link]
30
+ - **Demo:** [Demo Link if available]
 
 
31
 
32
  ## Uses
33
 
34
+ The model is trained for precise low-level geometric perception tasks which is able to
35
+ - Point-on-line detection
36
+ - Point-on-circle detection
37
+ - Angle classification
38
+ - Length comparison
39
+ - Geometric annotation understanding
40
+ Please refer to our [repo](https://github.com/euclid-multimodal/Euclid) for full input format.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ ### Limitations and Applications
43
 
44
+ Our model is not designed to handle:
45
+ - Comprehensive image understanding tasks
46
+ - Advanced cognitive reasoning beyond geometric analysis
47
 
48
+ However, the model demonstrates strength in low-level visual perception.
49
 
50
+ This capability makes it potentially valuable for serving as a base model for specialized downstream fintuning including:
51
 
52
+ - Robotic vision and automation systems
53
+ - Medical imaging and diagnostic support
54
+ - Industrial quality assurance and inspection
55
+ - Geometric education and visualization tools
56
 
57
+ ### Example Usage
58
 
59
+ Clone our Euclid [repo](https://github.com/euclid-multimodal/Euclid) first, set up the environment, then run:
60
 
61
+ ```
62
+ pip install -U "huggingface_hub[cli]"
63
+ huggingface-cli download --cache-dir $MODEL_PATH EuclidAI/Euclid-convnext-large
64
+ python euclid/eval/run_euclid_geo.py --model_path $MODEL_PATH --device cuda
65
+ ```
66
 
 
67
 
 
68
 
69
+ ## Evaluation Results
70
 
71
+ Performance on Geoperception benchmark tasks:
72
 
73
+ | Model | POL | POC | ALC | LHC | PEP | PRA | EQL | Overall |
74
+ |-------|-----|-----|-----|-----|-----|-----|-----|----------|
75
+ | Random Baseline | 0.43 | 2.63 | 59.92 | 51.36 | 0.25 | 0.00 | 0.02 | 16.37 |
76
+ | Pixtral-12B | 22.85 | 53.21 | 47.33 | 51.43 | 22.53 | 37.11 | **58.45** | 41.84 |
77
+ | Gemini-1.5-Pro | 24.42 | **69.80** | 57.96 | 79.05 | **39.60** | **77.59** | 52.27 | 57.24 |
78
+ | EUCLID-ConvNeXt-Large | 80.54 | 57.76 | 86.37 | 88.24 | 42.23 | 64.94 | 34.45 | 64.93 |
79
+ | EUCLID-ConvNeXt-XXLarge | **82.98** | 61.45 | **90.56** | **90.82** | **46.96** | 70.52 | 31.94 | **67.89** |
80
 
 
81
 
82
+ ## Citation
83
 
84
+ If you find Euclid useful for your research and applications, please cite using this BibTeX:
85
+ ```bibtex
86
+ @misc{euclid,
87
+ title={Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions},
88
+ url={https://euclid-llm.github.io/},
89
+ author={Zhang, Jiarui and Liu, Ollie and Yu, Tianyu and Hu, Jinyi and Neiswanger, Willie},
90
+ month={December},
91
+ year={2024}
92
+ }