File size: 4,011 Bytes
a0085e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
license: mit
datasets:
- IlyaGusev/ru_turbo_alpaca
- IlyaGusev/ru_turbo_alpaca_evol_instruct
- IlyaGusev/ru_turbo_saiga
- IlyaGusev/ru_sharegpt_cleaned
- IlyaGusev/oasst1_ru_main_branch
- IlyaGusev/gpt_roleplay_realm
- lksy/ru_instruct_gpt4
language:
- ru
- en
library_name: peft
tags:
- Saiga
- ruGPT-3.5
- 13B
- chat
- lora
- Peft
- adapter
---
# ruGPT-3.5 13B LoRA: Adapter-Only Version
Welcome to the adapter-only version of ruGPT-3.5 13B LoRA. This model is built upon the foundation of [ruGPT-3.5-13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B).
📌 Important: This model was trained using settings identical to [GigaSaiga](https://huggingface.co/IlyaGusev/gigasaiga_lora), but incorporates additional dataset.
🔗 Training code is [here](https://github.com/EvilFreelancer/ruGPT-3.5-13B-lora).
> Note: If you prefer, you can opt to use the ruGPT-3.5 13B fp16 base model.
## Code sample
```python
from peft import AutoPeftModelForCausalLM
model = AutoPeftModelForCausalLM.from_pretrained("zpbrent/peft-ruGPT-3.5-13B-lora")
```
## Examples
```text
User: Привет! Почему трава зелёная?
ruGPT-3.5: Трава зелёная благодаря хлорофиллу - пигменту растений, который поглощает световые волны определенной длины и преобразует их в энергию химических связей. Хлорофилл также обеспечивает растения питательными веществами из почвы через фотосинтез.
```
```text
User: Придумай стишок про нейросети.
ruGPT-3.5: Нейросеть – это чудо науки,
Она способна решать любые задачи.
И если ты хочешь стать программистом,
То лучше всего изучать нейронные сети.
```
```text
User: Высота самой высокой горы на Земле?
ruGPT-3.5: Самая высокая гора на Земле находится в Гималаях и называется Эверест (8848 метров).
```
```text
User: Сколько максимум лет может прожить галопогосская черепаха?
ruGPT-3.5: Галопогосские черепахи могут жить до 100 лет и более. Они являются одними из самых долгоживущих животных на планете.
```
## 📚 Training Datasets
The datasets utilized for training this model are consistent with those used for [Saiga-2](https://github.com/IlyaGusev/rulm).
Here's the comprehensive list:
- [ru_turbo_alpaca](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca)
- [ru_turbo_alpaca_evol_instruct](https://huggingface.co/datasets/IlyaGusev/ru_turbo_alpaca_evol_instruct)
- [ru_turbo_saiga](https://huggingface.co/datasets/IlyaGusev/ru_turbo_saiga)
- [ru_sharegpt_cleaned](https://huggingface.co/datasets/IlyaGusev/ru_sharegpt_cleaned)
- [oasst1_ru_main_branch](https://huggingface.co/datasets/IlyaGusev/oasst1_ru_main_branch)
- [gpt_roleplay_realm](https://huggingface.co/datasets/IlyaGusev/gpt_roleplay_realm)
- [ru_instruct_gpt4](https://huggingface.co/datasets/lksy/ru_instruct_gpt4)
## 🛠 Training Procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
## ⚙️ Framework Versions
Ensure you have the following framework versions for compatibility:
- PyTorch 2.1.0
- PEFT 0.5.0
- bitsandbytes 0.41.1
- transformers 4.34.0
## Links
- https://t.me/evilfreelancer
- https://dzen.ru/evilfreelancer
|