File size: 3,302 Bytes
0795f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
library_name: peft
license: apache-2.0
base_model: allura-org/Teleut-7b
tags:
- generated_from_trainer
datasets:
- allura-org/neon-41k
model-index:
- name: ckpts
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
base_model: allura-org/Teleut-7b

load_in_8bit: true
load_in_4bit: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true

strict: false

adapter: lora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.25
lora_target_modules:
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_target_linear: true
peft_layers_to_transform:
loraplus_lr_ratio: 16

chat_template: chatml
datasets:
  - path: allura-org/neon-41k
    type: chat_template
    split: train
    field_messages: conversations
    message_field_role: from
    message_field_content: value

dataset_prepared_path: last_run_prepared
#val_set_size: 0.02
output_dir: ./ckpts

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

#wandb_project: teleut-7b-rp
#wandb_entity:
#wandb_watch:
#wandb_name:
#wandb_log_model: checkpoint

# mlflow configuration if you're using it
mlflow_tracking_uri: https://public-tracking.mlflow-e00zzfjq11ky6jcgtv.backbone-e00bgn6e63256prmhq.msp.eu-north1.nebius.cloud
mlflow_experiment_name: teleut-7b-rp
mlflow_run_name: v1
hf_mlflow_log_artifacts: true

gradient_accumulation_steps: 1
micro_batch_size: 12
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 6e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

#deepspeed: deepspeed_configs/zero3_bf16.json

warmup_steps: 25
#evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 25
debug:
weight_decay: 0.01

```

</details><br>

# ckpts

This model is a fine-tuned version of [allura-org/Teleut-7b](https://huggingface.co/allura-org/Teleut-7b) on the allura-org/neon-41k dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- num_epochs: 1

### Training results



### Framework versions

- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0