vit-brain-tumour

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the Simezu/brain-tumour-MRI-scan dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0309
  • Accuracy: 0.9925

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.227 0.4255 100 0.3067 0.8910
0.0659 0.8511 200 0.1109 0.9627
0.0404 1.2766 300 0.0900 0.9776
0.05 1.7021 400 0.1082 0.9748
0.006 2.1277 500 0.0374 0.9888
0.0147 2.5532 600 0.0541 0.9888
0.0105 2.9787 700 0.0359 0.9907
0.0032 3.4043 800 0.0392 0.9907
0.0055 3.8298 900 0.0309 0.9925

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for essam24/vit-brain-tumour

Finetuned
(1792)
this model

Space using essam24/vit-brain-tumour 1

Evaluation results