vit-brain-tumour
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the Simezu/brain-tumour-MRI-scan dataset. It achieves the following results on the evaluation set:
- Loss: 0.0309
- Accuracy: 0.9925
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.227 | 0.4255 | 100 | 0.3067 | 0.8910 |
0.0659 | 0.8511 | 200 | 0.1109 | 0.9627 |
0.0404 | 1.2766 | 300 | 0.0900 | 0.9776 |
0.05 | 1.7021 | 400 | 0.1082 | 0.9748 |
0.006 | 2.1277 | 500 | 0.0374 | 0.9888 |
0.0147 | 2.5532 | 600 | 0.0541 | 0.9888 |
0.0105 | 2.9787 | 700 | 0.0359 | 0.9907 |
0.0032 | 3.4043 | 800 | 0.0392 | 0.9907 |
0.0055 | 3.8298 | 900 | 0.0309 | 0.9925 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 7
Model tree for essam24/vit-brain-tumour
Base model
google/vit-base-patch16-224-in21kSpace using essam24/vit-brain-tumour 1
Evaluation results
- Accuracy on Simezu/brain-tumour-MRI-scanvalidation set self-reported0.993