File size: 48,149 Bytes
c6792da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e8b54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6792da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
[2024-09-30 00:25:00,956][1148693] Saving configuration to /home/luyang/workspace/rl/train_dir/default_experiment/config.json...
[2024-09-30 00:25:00,961][1148693] Rollout worker 0 uses device cpu
[2024-09-30 00:25:00,961][1148693] Rollout worker 1 uses device cpu
[2024-09-30 00:25:00,961][1148693] Rollout worker 2 uses device cpu
[2024-09-30 00:25:00,961][1148693] Rollout worker 3 uses device cpu
[2024-09-30 00:25:00,961][1148693] Rollout worker 4 uses device cpu
[2024-09-30 00:25:00,961][1148693] Rollout worker 5 uses device cpu
[2024-09-30 00:25:00,961][1148693] Rollout worker 6 uses device cpu
[2024-09-30 00:25:00,962][1148693] Rollout worker 7 uses device cpu
[2024-09-30 00:25:01,008][1148693] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-30 00:25:01,008][1148693] InferenceWorker_p0-w0: min num requests: 2
[2024-09-30 00:25:01,042][1148693] Starting all processes...
[2024-09-30 00:25:01,042][1148693] Starting process learner_proc0
[2024-09-30 00:25:02,676][1148693] Starting all processes...
[2024-09-30 00:25:02,680][1148981] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-30 00:25:02,680][1148981] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2024-09-30 00:25:02,680][1148693] Starting process inference_proc0-0
[2024-09-30 00:25:02,680][1148693] Starting process rollout_proc0
[2024-09-30 00:25:02,681][1148693] Starting process rollout_proc1
[2024-09-30 00:25:02,681][1148693] Starting process rollout_proc2
[2024-09-30 00:25:02,681][1148693] Starting process rollout_proc3
[2024-09-30 00:25:02,681][1148693] Starting process rollout_proc4
[2024-09-30 00:25:02,681][1148693] Starting process rollout_proc5
[2024-09-30 00:25:02,686][1148693] Starting process rollout_proc6
[2024-09-30 00:25:02,686][1148693] Starting process rollout_proc7
[2024-09-30 00:25:02,712][1148981] Num visible devices: 1
[2024-09-30 00:25:02,719][1148981] Starting seed is not provided
[2024-09-30 00:25:02,719][1148981] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-30 00:25:02,719][1148981] Initializing actor-critic model on device cuda:0
[2024-09-30 00:25:02,719][1148981] RunningMeanStd input shape: (3, 72, 128)
[2024-09-30 00:25:02,720][1148981] RunningMeanStd input shape: (1,)
[2024-09-30 00:25:02,729][1148981] ConvEncoder: input_channels=3
[2024-09-30 00:25:02,801][1148981] Conv encoder output size: 512
[2024-09-30 00:25:02,801][1148981] Policy head output size: 512
[2024-09-30 00:25:02,812][1148981] Created Actor Critic model with architecture:
[2024-09-30 00:25:02,813][1148981] ActorCriticSharedWeights(
  (obs_normalizer): ObservationNormalizer(
    (running_mean_std): RunningMeanStdDictInPlace(
      (running_mean_std): ModuleDict(
        (obs): RunningMeanStdInPlace()
      )
    )
  )
  (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
  (encoder): VizdoomEncoder(
    (basic_encoder): ConvEncoder(
      (enc): RecursiveScriptModule(
        original_name=ConvEncoderImpl
        (conv_head): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Conv2d)
          (1): RecursiveScriptModule(original_name=ELU)
          (2): RecursiveScriptModule(original_name=Conv2d)
          (3): RecursiveScriptModule(original_name=ELU)
          (4): RecursiveScriptModule(original_name=Conv2d)
          (5): RecursiveScriptModule(original_name=ELU)
        )
        (mlp_layers): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Linear)
          (1): RecursiveScriptModule(original_name=ELU)
        )
      )
    )
  )
  (core): ModelCoreRNN(
    (core): GRU(512, 512)
  )
  (decoder): MlpDecoder(
    (mlp): Identity()
  )
  (critic_linear): Linear(in_features=512, out_features=1, bias=True)
  (action_parameterization): ActionParameterizationDefault(
    (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
  )
)
[2024-09-30 00:25:02,951][1148981] Using optimizer <class 'torch.optim.adam.Adam'>
[2024-09-30 00:25:03,366][1148693] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 1148693], exiting...
[2024-09-30 00:25:03,366][1148693] Runner profile tree view:
main_loop: 2.3244
[2024-09-30 00:25:03,367][1148693] Collected {}, FPS: 0.0
[2024-09-30 00:25:03,367][1148981] Stopping Batcher_0...
[2024-09-30 00:25:03,368][1148981] Loop batcher_evt_loop terminating...
[2024-09-30 00:25:03,637][1148981] No checkpoints found
[2024-09-30 00:25:03,637][1148981] Did not load from checkpoint, starting from scratch!
[2024-09-30 00:25:03,637][1148981] Initialized policy 0 weights for model version 0
[2024-09-30 00:25:03,639][1148981] LearnerWorker_p0 finished initialization!
[2024-09-30 00:25:03,640][1148981] Saving /home/luyang/workspace/rl/train_dir/default_experiment/checkpoint_p0/checkpoint_000000000_0.pth...
[2024-09-30 00:25:03,662][1148981] Stopping LearnerWorker_p0...
[2024-09-30 00:25:03,662][1148981] Loop learner_proc0_evt_loop terminating...
[2024-09-30 00:26:16,204][1149865] Saving configuration to /home/luyang/workspace/rl/train_dir/default_experiment/config.json...
[2024-09-30 00:26:16,209][1149865] Rollout worker 0 uses device cpu
[2024-09-30 00:26:16,209][1149865] Rollout worker 1 uses device cpu
[2024-09-30 00:26:16,209][1149865] Rollout worker 2 uses device cpu
[2024-09-30 00:26:16,209][1149865] Rollout worker 3 uses device cpu
[2024-09-30 00:26:16,209][1149865] Rollout worker 4 uses device cpu
[2024-09-30 00:26:16,209][1149865] Rollout worker 5 uses device cpu
[2024-09-30 00:26:16,209][1149865] Rollout worker 6 uses device cpu
[2024-09-30 00:26:16,209][1149865] Rollout worker 7 uses device cpu
[2024-09-30 00:26:16,252][1149865] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-30 00:26:16,252][1149865] InferenceWorker_p0-w0: min num requests: 2
[2024-09-30 00:26:16,286][1149865] Starting all processes...
[2024-09-30 00:26:16,286][1149865] Starting process learner_proc0
[2024-09-30 00:26:17,897][1149865] Starting all processes...
[2024-09-30 00:26:17,901][1150061] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-30 00:26:17,901][1150061] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2024-09-30 00:26:17,901][1149865] Starting process inference_proc0-0
[2024-09-30 00:26:17,901][1149865] Starting process rollout_proc0
[2024-09-30 00:26:17,901][1149865] Starting process rollout_proc1
[2024-09-30 00:26:17,902][1149865] Starting process rollout_proc2
[2024-09-30 00:26:17,902][1149865] Starting process rollout_proc3
[2024-09-30 00:26:17,902][1149865] Starting process rollout_proc4
[2024-09-30 00:26:17,902][1149865] Starting process rollout_proc5
[2024-09-30 00:26:17,902][1149865] Starting process rollout_proc6
[2024-09-30 00:26:17,903][1149865] Starting process rollout_proc7
[2024-09-30 00:26:17,953][1150061] Num visible devices: 1
[2024-09-30 00:26:17,959][1150061] Starting seed is not provided
[2024-09-30 00:26:17,959][1150061] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-30 00:26:17,959][1150061] Initializing actor-critic model on device cuda:0
[2024-09-30 00:26:17,959][1150061] RunningMeanStd input shape: (3, 72, 128)
[2024-09-30 00:26:17,960][1150061] RunningMeanStd input shape: (1,)
[2024-09-30 00:26:17,968][1150061] ConvEncoder: input_channels=3
[2024-09-30 00:26:18,041][1150061] Conv encoder output size: 512
[2024-09-30 00:26:18,041][1150061] Policy head output size: 512
[2024-09-30 00:26:18,052][1150061] Created Actor Critic model with architecture:
[2024-09-30 00:26:18,052][1150061] ActorCriticSharedWeights(
  (obs_normalizer): ObservationNormalizer(
    (running_mean_std): RunningMeanStdDictInPlace(
      (running_mean_std): ModuleDict(
        (obs): RunningMeanStdInPlace()
      )
    )
  )
  (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
  (encoder): VizdoomEncoder(
    (basic_encoder): ConvEncoder(
      (enc): RecursiveScriptModule(
        original_name=ConvEncoderImpl
        (conv_head): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Conv2d)
          (1): RecursiveScriptModule(original_name=ELU)
          (2): RecursiveScriptModule(original_name=Conv2d)
          (3): RecursiveScriptModule(original_name=ELU)
          (4): RecursiveScriptModule(original_name=Conv2d)
          (5): RecursiveScriptModule(original_name=ELU)
        )
        (mlp_layers): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Linear)
          (1): RecursiveScriptModule(original_name=ELU)
        )
      )
    )
  )
  (core): ModelCoreRNN(
    (core): GRU(512, 512)
  )
  (decoder): MlpDecoder(
    (mlp): Identity()
  )
  (critic_linear): Linear(in_features=512, out_features=1, bias=True)
  (action_parameterization): ActionParameterizationDefault(
    (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
  )
)
[2024-09-30 00:26:18,183][1150061] Using optimizer <class 'torch.optim.adam.Adam'>
[2024-09-30 00:26:18,816][1150061] Loading state from checkpoint /home/luyang/workspace/rl/train_dir/default_experiment/checkpoint_p0/checkpoint_000000000_0.pth...
[2024-09-30 00:26:18,828][1150061] Loading model from checkpoint
[2024-09-30 00:26:18,829][1150061] Loaded experiment state at self.train_step=0, self.env_steps=0
[2024-09-30 00:26:18,829][1150061] Initialized policy 0 weights for model version 0
[2024-09-30 00:26:18,831][1150061] LearnerWorker_p0 finished initialization!
[2024-09-30 00:26:18,831][1150061] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-30 00:26:19,422][1150142] Worker 3 uses CPU cores [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]
[2024-09-30 00:26:19,449][1150140] Worker 7 uses CPU cores [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95]
[2024-09-30 00:26:19,451][1150144] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[2024-09-30 00:26:19,456][1150145] Worker 6 uses CPU cores [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83]
[2024-09-30 00:26:19,456][1150137] Worker 5 uses CPU cores [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]
[2024-09-30 00:26:19,462][1150141] Worker 4 uses CPU cores [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]
[2024-09-30 00:26:19,465][1150143] Worker 1 uses CPU cores [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
[2024-09-30 00:26:19,466][1150138] Worker 2 uses CPU cores [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]
[2024-09-30 00:26:19,483][1150139] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-09-30 00:26:19,484][1150139] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2024-09-30 00:26:19,545][1150139] Num visible devices: 1
[2024-09-30 00:26:19,557][1149865] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-09-30 00:26:19,639][1150139] RunningMeanStd input shape: (3, 72, 128)
[2024-09-30 00:26:19,640][1150139] RunningMeanStd input shape: (1,)
[2024-09-30 00:26:19,648][1150139] ConvEncoder: input_channels=3
[2024-09-30 00:26:19,720][1150139] Conv encoder output size: 512
[2024-09-30 00:26:19,720][1150139] Policy head output size: 512
[2024-09-30 00:26:19,751][1149865] Inference worker 0-0 is ready!
[2024-09-30 00:26:19,751][1149865] All inference workers are ready! Signal rollout workers to start!
[2024-09-30 00:26:19,776][1150144] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-30 00:26:19,776][1150141] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-30 00:26:19,777][1150142] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-30 00:26:19,777][1150138] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-30 00:26:19,777][1150145] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-30 00:26:19,781][1150140] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-30 00:26:19,785][1150137] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-30 00:26:19,791][1150143] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-30 00:26:20,015][1150141] Decorrelating experience for 0 frames...
[2024-09-30 00:26:20,019][1150142] Decorrelating experience for 0 frames...
[2024-09-30 00:26:20,020][1150145] Decorrelating experience for 0 frames...
[2024-09-30 00:26:20,020][1150138] Decorrelating experience for 0 frames...
[2024-09-30 00:26:20,021][1150140] Decorrelating experience for 0 frames...
[2024-09-30 00:26:20,028][1150137] Decorrelating experience for 0 frames...
[2024-09-30 00:26:20,226][1150141] Decorrelating experience for 32 frames...
[2024-09-30 00:26:20,233][1150142] Decorrelating experience for 32 frames...
[2024-09-30 00:26:20,233][1150145] Decorrelating experience for 32 frames...
[2024-09-30 00:26:20,239][1150137] Decorrelating experience for 32 frames...
[2024-09-30 00:26:20,271][1150143] Decorrelating experience for 0 frames...
[2024-09-30 00:26:20,481][1150143] Decorrelating experience for 32 frames...
[2024-09-30 00:26:20,496][1150145] Decorrelating experience for 64 frames...
[2024-09-30 00:26:20,508][1150142] Decorrelating experience for 64 frames...
[2024-09-30 00:26:20,739][1150141] Decorrelating experience for 64 frames...
[2024-09-30 00:26:20,745][1150142] Decorrelating experience for 96 frames...
[2024-09-30 00:26:20,759][1150137] Decorrelating experience for 64 frames...
[2024-09-30 00:26:20,987][1150141] Decorrelating experience for 96 frames...
[2024-09-30 00:26:20,991][1150137] Decorrelating experience for 96 frames...
[2024-09-30 00:26:20,993][1150143] Decorrelating experience for 64 frames...
[2024-09-30 00:26:21,227][1150143] Decorrelating experience for 96 frames...
[2024-09-30 00:26:21,234][1150145] Decorrelating experience for 96 frames...
[2024-09-30 00:26:21,489][1150138] Decorrelating experience for 32 frames...
[2024-09-30 00:26:21,652][1150061] Signal inference workers to stop experience collection...
[2024-09-30 00:26:21,655][1150139] InferenceWorker_p0-w0: stopping experience collection
[2024-09-30 00:26:21,743][1150140] Decorrelating experience for 32 frames...
[2024-09-30 00:26:21,758][1150138] Decorrelating experience for 64 frames...
[2024-09-30 00:26:21,995][1150138] Decorrelating experience for 96 frames...
[2024-09-30 00:26:22,002][1150140] Decorrelating experience for 64 frames...
[2024-09-30 00:26:22,237][1150140] Decorrelating experience for 96 frames...
[2024-09-30 00:26:22,624][1150061] Signal inference workers to resume experience collection...
[2024-09-30 00:26:22,624][1150139] InferenceWorker_p0-w0: resuming experience collection
[2024-09-30 00:26:23,854][1150139] Updated weights for policy 0, policy_version 10 (0.0128)
[2024-09-30 00:26:24,557][1149865] Fps is (10 sec: 12288.1, 60 sec: 12288.1, 300 sec: 12288.1). Total num frames: 61440. Throughput: 0: 484.0. Samples: 2420. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
[2024-09-30 00:26:24,557][1149865] Avg episode reward: [(0, '4.453')]
[2024-09-30 00:26:25,059][1150139] Updated weights for policy 0, policy_version 20 (0.0006)
[2024-09-30 00:26:26,154][1150139] Updated weights for policy 0, policy_version 30 (0.0006)
[2024-09-30 00:26:27,304][1150139] Updated weights for policy 0, policy_version 40 (0.0006)
[2024-09-30 00:26:28,424][1150139] Updated weights for policy 0, policy_version 50 (0.0006)
[2024-09-30 00:26:29,557][1149865] Fps is (10 sec: 24166.4, 60 sec: 24166.4, 300 sec: 24166.4). Total num frames: 241664. Throughput: 0: 5481.2. Samples: 54812. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-30 00:26:29,557][1149865] Avg episode reward: [(0, '4.420')]
[2024-09-30 00:26:29,562][1150061] Saving new best policy, reward=4.420!
[2024-09-30 00:26:29,562][1150139] Updated weights for policy 0, policy_version 60 (0.0005)
[2024-09-30 00:26:30,697][1150139] Updated weights for policy 0, policy_version 70 (0.0005)
[2024-09-30 00:26:31,899][1150139] Updated weights for policy 0, policy_version 80 (0.0005)
[2024-09-30 00:26:33,041][1150139] Updated weights for policy 0, policy_version 90 (0.0005)
[2024-09-30 00:26:34,164][1150139] Updated weights for policy 0, policy_version 100 (0.0006)
[2024-09-30 00:26:34,557][1149865] Fps is (10 sec: 36044.6, 60 sec: 28125.8, 300 sec: 28125.8). Total num frames: 421888. Throughput: 0: 5422.5. Samples: 81338. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2024-09-30 00:26:34,557][1149865] Avg episode reward: [(0, '4.360')]
[2024-09-30 00:26:35,313][1150139] Updated weights for policy 0, policy_version 110 (0.0006)
[2024-09-30 00:26:36,243][1149865] Heartbeat connected on Batcher_0
[2024-09-30 00:26:36,247][1149865] Heartbeat connected on LearnerWorker_p0
[2024-09-30 00:26:36,254][1149865] Heartbeat connected on InferenceWorker_p0-w0
[2024-09-30 00:26:36,261][1149865] Heartbeat connected on RolloutWorker_w1
[2024-09-30 00:26:36,265][1149865] Heartbeat connected on RolloutWorker_w2
[2024-09-30 00:26:36,270][1149865] Heartbeat connected on RolloutWorker_w3
[2024-09-30 00:26:36,273][1149865] Heartbeat connected on RolloutWorker_w4
[2024-09-30 00:26:36,278][1149865] Heartbeat connected on RolloutWorker_w5
[2024-09-30 00:26:36,283][1149865] Heartbeat connected on RolloutWorker_w6
[2024-09-30 00:26:36,286][1149865] Heartbeat connected on RolloutWorker_w7
[2024-09-30 00:26:36,388][1150139] Updated weights for policy 0, policy_version 120 (0.0006)
[2024-09-30 00:26:37,485][1150139] Updated weights for policy 0, policy_version 130 (0.0005)
[2024-09-30 00:26:38,623][1150139] Updated weights for policy 0, policy_version 140 (0.0005)
[2024-09-30 00:26:39,557][1149865] Fps is (10 sec: 36454.4, 60 sec: 30310.4, 300 sec: 30310.4). Total num frames: 606208. Throughput: 0: 6816.1. Samples: 136322. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-30 00:26:39,557][1149865] Avg episode reward: [(0, '4.362')]
[2024-09-30 00:26:39,793][1150139] Updated weights for policy 0, policy_version 150 (0.0005)
[2024-09-30 00:26:40,942][1150139] Updated weights for policy 0, policy_version 160 (0.0006)
[2024-09-30 00:26:42,120][1150139] Updated weights for policy 0, policy_version 170 (0.0006)
[2024-09-30 00:26:43,255][1150139] Updated weights for policy 0, policy_version 180 (0.0006)
[2024-09-30 00:26:44,363][1150139] Updated weights for policy 0, policy_version 190 (0.0006)
[2024-09-30 00:26:44,557][1149865] Fps is (10 sec: 36044.9, 60 sec: 31293.4, 300 sec: 31293.4). Total num frames: 782336. Throughput: 0: 7583.6. Samples: 189590. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-09-30 00:26:44,557][1149865] Avg episode reward: [(0, '4.718')]
[2024-09-30 00:26:44,560][1150061] Saving new best policy, reward=4.718!
[2024-09-30 00:26:45,498][1150139] Updated weights for policy 0, policy_version 200 (0.0006)
[2024-09-30 00:26:46,658][1150139] Updated weights for policy 0, policy_version 210 (0.0005)
[2024-09-30 00:26:47,749][1150139] Updated weights for policy 0, policy_version 220 (0.0005)
[2024-09-30 00:26:48,879][1150139] Updated weights for policy 0, policy_version 230 (0.0006)
[2024-09-30 00:26:49,557][1149865] Fps is (10 sec: 36044.5, 60 sec: 32221.8, 300 sec: 32221.8). Total num frames: 966656. Throughput: 0: 7214.5. Samples: 216436. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-30 00:26:49,558][1149865] Avg episode reward: [(0, '4.984')]
[2024-09-30 00:26:49,558][1150061] Saving new best policy, reward=4.984!
[2024-09-30 00:26:49,996][1150139] Updated weights for policy 0, policy_version 240 (0.0006)
[2024-09-30 00:26:51,078][1150139] Updated weights for policy 0, policy_version 250 (0.0005)
[2024-09-30 00:26:52,165][1150139] Updated weights for policy 0, policy_version 260 (0.0005)
[2024-09-30 00:26:53,360][1150139] Updated weights for policy 0, policy_version 270 (0.0006)
[2024-09-30 00:26:54,557][1149865] Fps is (10 sec: 36044.3, 60 sec: 32650.8, 300 sec: 32650.8). Total num frames: 1142784. Throughput: 0: 7775.5. Samples: 272144. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-30 00:26:54,558][1149865] Avg episode reward: [(0, '6.825')]
[2024-09-30 00:26:54,561][1150061] Saving new best policy, reward=6.825!
[2024-09-30 00:26:54,627][1150139] Updated weights for policy 0, policy_version 280 (0.0006)
[2024-09-30 00:26:55,804][1150139] Updated weights for policy 0, policy_version 290 (0.0006)
[2024-09-30 00:26:56,921][1150139] Updated weights for policy 0, policy_version 300 (0.0006)
[2024-09-30 00:26:58,061][1150139] Updated weights for policy 0, policy_version 310 (0.0006)
[2024-09-30 00:26:59,306][1150139] Updated weights for policy 0, policy_version 320 (0.0006)
[2024-09-30 00:26:59,557][1149865] Fps is (10 sec: 35225.8, 60 sec: 32972.8, 300 sec: 32972.8). Total num frames: 1318912. Throughput: 0: 8094.2. Samples: 323770. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-30 00:26:59,557][1149865] Avg episode reward: [(0, '7.969')]
[2024-09-30 00:26:59,558][1150061] Saving new best policy, reward=7.969!
[2024-09-30 00:27:00,379][1150139] Updated weights for policy 0, policy_version 330 (0.0006)
[2024-09-30 00:27:01,493][1150139] Updated weights for policy 0, policy_version 340 (0.0006)
[2024-09-30 00:27:02,648][1150139] Updated weights for policy 0, policy_version 350 (0.0005)
[2024-09-30 00:27:03,846][1150139] Updated weights for policy 0, policy_version 360 (0.0006)
[2024-09-30 00:27:04,557][1149865] Fps is (10 sec: 35635.7, 60 sec: 33314.1, 300 sec: 33314.1). Total num frames: 1499136. Throughput: 0: 7803.8. Samples: 351172. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-30 00:27:04,557][1149865] Avg episode reward: [(0, '9.395')]
[2024-09-30 00:27:04,560][1150061] Saving new best policy, reward=9.395!
[2024-09-30 00:27:04,958][1150139] Updated weights for policy 0, policy_version 370 (0.0005)
[2024-09-30 00:27:06,158][1150139] Updated weights for policy 0, policy_version 380 (0.0006)
[2024-09-30 00:27:07,341][1150139] Updated weights for policy 0, policy_version 390 (0.0006)
[2024-09-30 00:27:08,471][1150139] Updated weights for policy 0, policy_version 400 (0.0006)
[2024-09-30 00:27:09,550][1150139] Updated weights for policy 0, policy_version 410 (0.0005)
[2024-09-30 00:27:09,557][1149865] Fps is (10 sec: 36045.1, 60 sec: 33587.2, 300 sec: 33587.2). Total num frames: 1679360. Throughput: 0: 8916.3. Samples: 403652. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-30 00:27:09,557][1149865] Avg episode reward: [(0, '10.451')]
[2024-09-30 00:27:09,558][1150061] Saving new best policy, reward=10.451!
[2024-09-30 00:27:10,625][1150139] Updated weights for policy 0, policy_version 420 (0.0005)
[2024-09-30 00:27:11,753][1150139] Updated weights for policy 0, policy_version 430 (0.0006)
[2024-09-30 00:27:12,906][1150139] Updated weights for policy 0, policy_version 440 (0.0005)
[2024-09-30 00:27:14,043][1150139] Updated weights for policy 0, policy_version 450 (0.0005)
[2024-09-30 00:27:14,557][1149865] Fps is (10 sec: 36044.8, 60 sec: 33810.6, 300 sec: 33810.6). Total num frames: 1859584. Throughput: 0: 8974.4. Samples: 458662. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-09-30 00:27:14,557][1149865] Avg episode reward: [(0, '13.438')]
[2024-09-30 00:27:14,560][1150061] Saving new best policy, reward=13.438!
[2024-09-30 00:27:15,159][1150139] Updated weights for policy 0, policy_version 460 (0.0006)
[2024-09-30 00:27:16,224][1150139] Updated weights for policy 0, policy_version 470 (0.0006)
[2024-09-30 00:27:17,339][1150139] Updated weights for policy 0, policy_version 480 (0.0006)
[2024-09-30 00:27:18,411][1150139] Updated weights for policy 0, policy_version 490 (0.0006)
[2024-09-30 00:27:19,490][1150139] Updated weights for policy 0, policy_version 500 (0.0006)
[2024-09-30 00:27:19,557][1149865] Fps is (10 sec: 36863.4, 60 sec: 34133.3, 300 sec: 34133.3). Total num frames: 2048000. Throughput: 0: 9008.8. Samples: 486736. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-30 00:27:19,558][1149865] Avg episode reward: [(0, '15.719')]
[2024-09-30 00:27:19,558][1150061] Saving new best policy, reward=15.719!
[2024-09-30 00:27:20,560][1150139] Updated weights for policy 0, policy_version 510 (0.0006)
[2024-09-30 00:27:21,675][1150139] Updated weights for policy 0, policy_version 520 (0.0006)
[2024-09-30 00:27:22,733][1150139] Updated weights for policy 0, policy_version 530 (0.0006)
[2024-09-30 00:27:23,821][1150139] Updated weights for policy 0, policy_version 540 (0.0006)
[2024-09-30 00:27:24,557][1149865] Fps is (10 sec: 37683.2, 60 sec: 36249.6, 300 sec: 34406.4). Total num frames: 2236416. Throughput: 0: 9047.6. Samples: 543462. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2024-09-30 00:27:24,557][1149865] Avg episode reward: [(0, '18.072')]
[2024-09-30 00:27:24,569][1150061] Saving new best policy, reward=18.072!
[2024-09-30 00:27:24,893][1150139] Updated weights for policy 0, policy_version 550 (0.0006)
[2024-09-30 00:27:25,971][1150139] Updated weights for policy 0, policy_version 560 (0.0005)
[2024-09-30 00:27:27,037][1150139] Updated weights for policy 0, policy_version 570 (0.0006)
[2024-09-30 00:27:28,155][1150139] Updated weights for policy 0, policy_version 580 (0.0005)
[2024-09-30 00:27:29,272][1150139] Updated weights for policy 0, policy_version 590 (0.0006)
[2024-09-30 00:27:29,557][1149865] Fps is (10 sec: 37683.7, 60 sec: 36386.1, 300 sec: 34640.5). Total num frames: 2424832. Throughput: 0: 9118.1. Samples: 599906. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-30 00:27:29,557][1149865] Avg episode reward: [(0, '20.999')]
[2024-09-30 00:27:29,558][1150061] Saving new best policy, reward=20.999!
[2024-09-30 00:27:30,323][1150139] Updated weights for policy 0, policy_version 600 (0.0006)
[2024-09-30 00:27:31,407][1150139] Updated weights for policy 0, policy_version 610 (0.0006)
[2024-09-30 00:27:32,467][1150139] Updated weights for policy 0, policy_version 620 (0.0006)
[2024-09-30 00:27:33,593][1150139] Updated weights for policy 0, policy_version 630 (0.0006)
[2024-09-30 00:27:34,557][1149865] Fps is (10 sec: 37683.3, 60 sec: 36522.7, 300 sec: 34843.3). Total num frames: 2613248. Throughput: 0: 9160.0. Samples: 628636. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-09-30 00:27:34,557][1149865] Avg episode reward: [(0, '20.389')]
[2024-09-30 00:27:34,683][1150139] Updated weights for policy 0, policy_version 640 (0.0005)
[2024-09-30 00:27:35,755][1150139] Updated weights for policy 0, policy_version 650 (0.0006)
[2024-09-30 00:27:36,830][1150139] Updated weights for policy 0, policy_version 660 (0.0006)
[2024-09-30 00:27:37,890][1150139] Updated weights for policy 0, policy_version 670 (0.0006)
[2024-09-30 00:27:38,971][1150139] Updated weights for policy 0, policy_version 680 (0.0006)
[2024-09-30 00:27:39,557][1149865] Fps is (10 sec: 38092.7, 60 sec: 36659.2, 300 sec: 35072.0). Total num frames: 2805760. Throughput: 0: 9181.5. Samples: 685308. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-30 00:27:39,557][1149865] Avg episode reward: [(0, '19.388')]
[2024-09-30 00:27:40,031][1150139] Updated weights for policy 0, policy_version 690 (0.0006)
[2024-09-30 00:27:41,100][1150139] Updated weights for policy 0, policy_version 700 (0.0005)
[2024-09-30 00:27:42,153][1150139] Updated weights for policy 0, policy_version 710 (0.0006)
[2024-09-30 00:27:43,230][1150139] Updated weights for policy 0, policy_version 720 (0.0006)
[2024-09-30 00:27:44,312][1150139] Updated weights for policy 0, policy_version 730 (0.0006)
[2024-09-30 00:27:44,557][1149865] Fps is (10 sec: 38502.4, 60 sec: 36932.3, 300 sec: 35273.8). Total num frames: 2998272. Throughput: 0: 9311.9. Samples: 742806. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-30 00:27:44,557][1149865] Avg episode reward: [(0, '22.197')]
[2024-09-30 00:27:44,560][1150061] Saving new best policy, reward=22.197!
[2024-09-30 00:27:45,376][1150139] Updated weights for policy 0, policy_version 740 (0.0006)
[2024-09-30 00:27:46,438][1150139] Updated weights for policy 0, policy_version 750 (0.0006)
[2024-09-30 00:27:47,515][1150139] Updated weights for policy 0, policy_version 760 (0.0005)
[2024-09-30 00:27:48,572][1150139] Updated weights for policy 0, policy_version 770 (0.0006)
[2024-09-30 00:27:49,557][1149865] Fps is (10 sec: 38502.4, 60 sec: 37068.9, 300 sec: 35453.2). Total num frames: 3190784. Throughput: 0: 9343.1. Samples: 771610. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2024-09-30 00:27:49,557][1149865] Avg episode reward: [(0, '21.389')]
[2024-09-30 00:27:49,645][1150139] Updated weights for policy 0, policy_version 780 (0.0006)
[2024-09-30 00:27:50,716][1150139] Updated weights for policy 0, policy_version 790 (0.0005)
[2024-09-30 00:27:51,800][1150139] Updated weights for policy 0, policy_version 800 (0.0006)
[2024-09-30 00:27:52,845][1150139] Updated weights for policy 0, policy_version 810 (0.0006)
[2024-09-30 00:27:53,913][1150139] Updated weights for policy 0, policy_version 820 (0.0005)
[2024-09-30 00:27:54,557][1149865] Fps is (10 sec: 38092.7, 60 sec: 37273.7, 300 sec: 35570.5). Total num frames: 3379200. Throughput: 0: 9454.0. Samples: 829084. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-09-30 00:27:54,557][1149865] Avg episode reward: [(0, '25.173')]
[2024-09-30 00:27:54,560][1150061] Saving new best policy, reward=25.173!
[2024-09-30 00:27:54,982][1150139] Updated weights for policy 0, policy_version 830 (0.0006)
[2024-09-30 00:27:56,101][1150139] Updated weights for policy 0, policy_version 840 (0.0006)
[2024-09-30 00:27:57,180][1150139] Updated weights for policy 0, policy_version 850 (0.0005)
[2024-09-30 00:27:58,258][1150139] Updated weights for policy 0, policy_version 860 (0.0006)
[2024-09-30 00:27:59,351][1150139] Updated weights for policy 0, policy_version 870 (0.0005)
[2024-09-30 00:27:59,557][1149865] Fps is (10 sec: 38092.9, 60 sec: 37546.7, 300 sec: 35717.1). Total num frames: 3571712. Throughput: 0: 9494.8. Samples: 885926. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-09-30 00:27:59,557][1149865] Avg episode reward: [(0, '21.345')]
[2024-09-30 00:28:00,433][1150139] Updated weights for policy 0, policy_version 880 (0.0006)
[2024-09-30 00:28:01,499][1150139] Updated weights for policy 0, policy_version 890 (0.0006)
[2024-09-30 00:28:02,611][1150139] Updated weights for policy 0, policy_version 900 (0.0006)
[2024-09-30 00:28:03,681][1150139] Updated weights for policy 0, policy_version 910 (0.0006)
[2024-09-30 00:28:04,557][1149865] Fps is (10 sec: 38092.8, 60 sec: 37683.2, 300 sec: 35810.7). Total num frames: 3760128. Throughput: 0: 9499.9. Samples: 914232. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-30 00:28:04,557][1149865] Avg episode reward: [(0, '25.023')]
[2024-09-30 00:28:04,751][1150139] Updated weights for policy 0, policy_version 920 (0.0006)
[2024-09-30 00:28:05,834][1150139] Updated weights for policy 0, policy_version 930 (0.0006)
[2024-09-30 00:28:07,053][1150139] Updated weights for policy 0, policy_version 940 (0.0006)
[2024-09-30 00:28:08,307][1150139] Updated weights for policy 0, policy_version 950 (0.0006)
[2024-09-30 00:28:09,418][1150139] Updated weights for policy 0, policy_version 960 (0.0006)
[2024-09-30 00:28:09,557][1149865] Fps is (10 sec: 36453.7, 60 sec: 37614.8, 300 sec: 35784.1). Total num frames: 3936256. Throughput: 0: 9452.1. Samples: 968808. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-09-30 00:28:09,558][1149865] Avg episode reward: [(0, '26.893')]
[2024-09-30 00:28:09,558][1150061] Saving new best policy, reward=26.893!
[2024-09-30 00:28:10,576][1150139] Updated weights for policy 0, policy_version 970 (0.0006)
[2024-09-30 00:28:11,497][1149865] Component Batcher_0 stopped!
[2024-09-30 00:28:11,497][1150061] Stopping Batcher_0...
[2024-09-30 00:28:11,497][1149865] Component RolloutWorker_w0 process died already! Don't wait for it.
[2024-09-30 00:28:11,497][1150061] Saving /home/luyang/workspace/rl/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-09-30 00:28:11,498][1150061] Loop batcher_evt_loop terminating...
[2024-09-30 00:28:11,513][1150139] Weights refcount: 2 0
[2024-09-30 00:28:11,514][1150139] Stopping InferenceWorker_p0-w0...
[2024-09-30 00:28:11,514][1150139] Loop inference_proc0-0_evt_loop terminating...
[2024-09-30 00:28:11,514][1149865] Component InferenceWorker_p0-w0 stopped!
[2024-09-30 00:28:11,527][1150138] Stopping RolloutWorker_w2...
[2024-09-30 00:28:11,527][1149865] Component RolloutWorker_w2 stopped!
[2024-09-30 00:28:11,528][1150138] Loop rollout_proc2_evt_loop terminating...
[2024-09-30 00:28:11,530][1150142] Stopping RolloutWorker_w3...
[2024-09-30 00:28:11,530][1149865] Component RolloutWorker_w3 stopped!
[2024-09-30 00:28:11,530][1150142] Loop rollout_proc3_evt_loop terminating...
[2024-09-30 00:28:11,531][1149865] Component RolloutWorker_w5 stopped!
[2024-09-30 00:28:11,531][1150137] Stopping RolloutWorker_w5...
[2024-09-30 00:28:11,531][1149865] Component RolloutWorker_w6 stopped!
[2024-09-30 00:28:11,531][1150145] Stopping RolloutWorker_w6...
[2024-09-30 00:28:11,531][1150137] Loop rollout_proc5_evt_loop terminating...
[2024-09-30 00:28:11,531][1150145] Loop rollout_proc6_evt_loop terminating...
[2024-09-30 00:28:11,532][1149865] Component RolloutWorker_w1 stopped!
[2024-09-30 00:28:11,532][1150143] Stopping RolloutWorker_w1...
[2024-09-30 00:28:11,533][1150143] Loop rollout_proc1_evt_loop terminating...
[2024-09-30 00:28:11,533][1149865] Component RolloutWorker_w4 stopped!
[2024-09-30 00:28:11,533][1150141] Stopping RolloutWorker_w4...
[2024-09-30 00:28:11,533][1150141] Loop rollout_proc4_evt_loop terminating...
[2024-09-30 00:28:11,536][1149865] Component RolloutWorker_w7 stopped!
[2024-09-30 00:28:11,536][1150140] Stopping RolloutWorker_w7...
[2024-09-30 00:28:11,536][1150140] Loop rollout_proc7_evt_loop terminating...
[2024-09-30 00:28:11,548][1150061] Saving /home/luyang/workspace/rl/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-09-30 00:28:11,677][1150061] Stopping LearnerWorker_p0...
[2024-09-30 00:28:11,677][1150061] Loop learner_proc0_evt_loop terminating...
[2024-09-30 00:28:11,677][1149865] Component LearnerWorker_p0 stopped!
[2024-09-30 00:28:11,678][1149865] Waiting for process learner_proc0 to stop...
[2024-09-30 00:28:12,213][1149865] Waiting for process inference_proc0-0 to join...
[2024-09-30 00:28:12,214][1149865] Waiting for process rollout_proc0 to join...
[2024-09-30 00:28:12,214][1149865] Waiting for process rollout_proc1 to join...
[2024-09-30 00:28:12,214][1149865] Waiting for process rollout_proc2 to join...
[2024-09-30 00:28:12,214][1149865] Waiting for process rollout_proc3 to join...
[2024-09-30 00:28:12,214][1149865] Waiting for process rollout_proc4 to join...
[2024-09-30 00:28:12,215][1149865] Waiting for process rollout_proc5 to join...
[2024-09-30 00:28:12,215][1149865] Waiting for process rollout_proc6 to join...
[2024-09-30 00:28:12,215][1149865] Waiting for process rollout_proc7 to join...
[2024-09-30 00:28:12,215][1149865] Batcher 0 profile tree view:
batching: 8.1702, releasing_batches: 0.0148
[2024-09-30 00:28:12,215][1149865] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
  wait_policy_total: 2.2430
update_model: 1.6718
  weight_update: 0.0006
one_step: 0.0013
  handle_policy_step: 101.6105
    deserialize: 4.2527, stack: 0.5251, obs_to_device_normalize: 21.3149, forward: 52.1177, send_messages: 6.7725
    prepare_outputs: 11.8901
      to_cpu: 6.4354
[2024-09-30 00:28:12,216][1149865] Learner 0 profile tree view:
misc: 0.0031, prepare_batch: 4.0428
train: 10.3860
  epoch_init: 0.0033, minibatch_init: 0.0037, losses_postprocess: 0.1662, kl_divergence: 0.2113, after_optimizer: 0.8304
  calculate_losses: 4.6270
    losses_init: 0.0020, forward_head: 0.3762, bptt_initial: 2.3802, tail: 0.3318, advantages_returns: 0.0873, losses: 0.6229
    bptt: 0.7209
      bptt_forward_core: 0.6909
  update: 4.3204
    clip: 0.4495
[2024-09-30 00:28:12,216][1149865] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.0819, enqueue_policy_requests: 4.5546, env_step: 67.0989, overhead: 3.2408, complete_rollouts: 0.1226
save_policy_outputs: 5.6070
  split_output_tensors: 1.8787
[2024-09-30 00:28:12,216][1149865] Loop Runner_EvtLoop terminating...
[2024-09-30 00:28:12,216][1149865] Runner profile tree view:
main_loop: 115.9303
[2024-09-30 00:28:12,216][1149865] Collected {0: 4005888}, FPS: 34554.3
[2024-09-30 00:28:12,419][1149865] Loading existing experiment configuration from /home/luyang/workspace/rl/train_dir/default_experiment/config.json
[2024-09-30 00:28:12,419][1149865] Overriding arg 'num_workers' with value 1 passed from command line
[2024-09-30 00:28:12,420][1149865] Adding new argument 'no_render'=True that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'save_video'=True that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'video_name'=None that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'hf_repository'='esperesa/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'train_script'=None that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2024-09-30 00:28:12,420][1149865] Using frameskip 1 and render_action_repeat=4 for evaluation
[2024-09-30 00:28:12,441][1149865] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-09-30 00:28:12,443][1149865] RunningMeanStd input shape: (3, 72, 128)
[2024-09-30 00:28:12,443][1149865] RunningMeanStd input shape: (1,)
[2024-09-30 00:28:12,452][1149865] ConvEncoder: input_channels=3
[2024-09-30 00:28:12,522][1149865] Conv encoder output size: 512
[2024-09-30 00:28:12,522][1149865] Policy head output size: 512
[2024-09-30 00:28:12,681][1149865] Loading state from checkpoint /home/luyang/workspace/rl/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-09-30 00:28:13,271][1149865] Num frames 100...
[2024-09-30 00:28:13,350][1149865] Num frames 200...
[2024-09-30 00:28:13,427][1149865] Num frames 300...
[2024-09-30 00:28:13,503][1149865] Num frames 400...
[2024-09-30 00:28:13,581][1149865] Num frames 500...
[2024-09-30 00:28:13,659][1149865] Num frames 600...
[2024-09-30 00:28:13,738][1149865] Num frames 700...
[2024-09-30 00:28:13,815][1149865] Num frames 800...
[2024-09-30 00:28:13,894][1149865] Num frames 900...
[2024-09-30 00:28:13,973][1149865] Num frames 1000...
[2024-09-30 00:28:14,052][1149865] Num frames 1100...
[2024-09-30 00:28:14,132][1149865] Num frames 1200...
[2024-09-30 00:28:14,208][1149865] Num frames 1300...
[2024-09-30 00:28:14,285][1149865] Num frames 1400...
[2024-09-30 00:28:14,364][1149865] Num frames 1500...
[2024-09-30 00:28:14,445][1149865] Avg episode rewards: #0: 34.360, true rewards: #0: 15.360
[2024-09-30 00:28:14,445][1149865] Avg episode reward: 34.360, avg true_objective: 15.360
[2024-09-30 00:28:14,497][1149865] Num frames 1600...
[2024-09-30 00:28:14,575][1149865] Num frames 1700...
[2024-09-30 00:28:14,654][1149865] Num frames 1800...
[2024-09-30 00:28:14,733][1149865] Num frames 1900...
[2024-09-30 00:28:14,811][1149865] Num frames 2000...
[2024-09-30 00:28:14,891][1149865] Num frames 2100...
[2024-09-30 00:28:14,967][1149865] Num frames 2200...
[2024-09-30 00:28:15,045][1149865] Num frames 2300...
[2024-09-30 00:28:15,125][1149865] Num frames 2400...
[2024-09-30 00:28:15,204][1149865] Num frames 2500...
[2024-09-30 00:28:15,283][1149865] Num frames 2600...
[2024-09-30 00:28:15,363][1149865] Num frames 2700...
[2024-09-30 00:28:15,443][1149865] Num frames 2800...
[2024-09-30 00:28:15,523][1149865] Num frames 2900...
[2024-09-30 00:28:15,602][1149865] Num frames 3000...
[2024-09-30 00:28:15,681][1149865] Num frames 3100...
[2024-09-30 00:28:15,758][1149865] Num frames 3200...
[2024-09-30 00:28:15,834][1149865] Num frames 3300...
[2024-09-30 00:28:15,958][1149865] Avg episode rewards: #0: 40.959, true rewards: #0: 16.960
[2024-09-30 00:28:15,958][1149865] Avg episode reward: 40.959, avg true_objective: 16.960
[2024-09-30 00:28:15,966][1149865] Num frames 3400...
[2024-09-30 00:28:16,049][1149865] Num frames 3500...
[2024-09-30 00:28:16,127][1149865] Num frames 3600...
[2024-09-30 00:28:16,205][1149865] Num frames 3700...
[2024-09-30 00:28:16,284][1149865] Num frames 3800...
[2024-09-30 00:28:16,363][1149865] Num frames 3900...
[2024-09-30 00:28:16,443][1149865] Num frames 4000...
[2024-09-30 00:28:16,521][1149865] Num frames 4100...
[2024-09-30 00:28:16,598][1149865] Num frames 4200...
[2024-09-30 00:28:16,675][1149865] Num frames 4300...
[2024-09-30 00:28:16,754][1149865] Num frames 4400...
[2024-09-30 00:28:16,832][1149865] Num frames 4500...
[2024-09-30 00:28:16,919][1149865] Avg episode rewards: #0: 36.480, true rewards: #0: 15.147
[2024-09-30 00:28:16,919][1149865] Avg episode reward: 36.480, avg true_objective: 15.147
[2024-09-30 00:28:16,968][1149865] Num frames 4600...
[2024-09-30 00:28:17,047][1149865] Num frames 4700...
[2024-09-30 00:28:17,126][1149865] Num frames 4800...
[2024-09-30 00:28:17,206][1149865] Num frames 4900...
[2024-09-30 00:28:17,282][1149865] Num frames 5000...
[2024-09-30 00:28:17,358][1149865] Num frames 5100...
[2024-09-30 00:28:17,470][1149865] Avg episode rewards: #0: 31.192, true rewards: #0: 12.942
[2024-09-30 00:28:17,471][1149865] Avg episode reward: 31.192, avg true_objective: 12.942
[2024-09-30 00:28:17,490][1149865] Num frames 5200...
[2024-09-30 00:28:17,569][1149865] Num frames 5300...
[2024-09-30 00:28:17,649][1149865] Num frames 5400...
[2024-09-30 00:28:17,729][1149865] Num frames 5500...
[2024-09-30 00:28:17,807][1149865] Num frames 5600...
[2024-09-30 00:28:17,887][1149865] Num frames 5700...
[2024-09-30 00:28:17,966][1149865] Num frames 5800...
[2024-09-30 00:28:18,043][1149865] Num frames 5900...
[2024-09-30 00:28:18,120][1149865] Num frames 6000...
[2024-09-30 00:28:18,196][1149865] Num frames 6100...
[2024-09-30 00:28:18,274][1149865] Num frames 6200...
[2024-09-30 00:28:18,352][1149865] Num frames 6300...
[2024-09-30 00:28:18,477][1149865] Avg episode rewards: #0: 30.786, true rewards: #0: 12.786
[2024-09-30 00:28:18,477][1149865] Avg episode reward: 30.786, avg true_objective: 12.786
[2024-09-30 00:28:18,484][1149865] Num frames 6400...
[2024-09-30 00:28:18,564][1149865] Num frames 6500...
[2024-09-30 00:28:18,643][1149865] Num frames 6600...
[2024-09-30 00:28:18,723][1149865] Num frames 6700...
[2024-09-30 00:28:18,803][1149865] Num frames 6800...
[2024-09-30 00:28:18,879][1149865] Num frames 6900...
[2024-09-30 00:28:18,957][1149865] Num frames 7000...
[2024-09-30 00:28:19,033][1149865] Num frames 7100...
[2024-09-30 00:28:19,110][1149865] Num frames 7200...
[2024-09-30 00:28:19,190][1149865] Num frames 7300...
[2024-09-30 00:28:19,271][1149865] Num frames 7400...
[2024-09-30 00:28:19,353][1149865] Num frames 7500...
[2024-09-30 00:28:19,443][1149865] Num frames 7600...
[2024-09-30 00:28:19,538][1149865] Num frames 7700...
[2024-09-30 00:28:19,630][1149865] Num frames 7800...
[2024-09-30 00:28:19,721][1149865] Num frames 7900...
[2024-09-30 00:28:19,817][1149865] Num frames 8000...
[2024-09-30 00:28:19,910][1149865] Num frames 8100...
[2024-09-30 00:28:20,014][1149865] Avg episode rewards: #0: 33.588, true rewards: #0: 13.588
[2024-09-30 00:28:20,015][1149865] Avg episode reward: 33.588, avg true_objective: 13.588
[2024-09-30 00:28:20,062][1149865] Num frames 8200...
[2024-09-30 00:28:20,156][1149865] Num frames 8300...
[2024-09-30 00:28:20,246][1149865] Num frames 8400...
[2024-09-30 00:28:20,341][1149865] Num frames 8500...
[2024-09-30 00:28:20,433][1149865] Num frames 8600...
[2024-09-30 00:28:20,523][1149865] Num frames 8700...
[2024-09-30 00:28:20,616][1149865] Num frames 8800...
[2024-09-30 00:28:20,707][1149865] Num frames 8900...
[2024-09-30 00:28:20,800][1149865] Num frames 9000...
[2024-09-30 00:28:20,892][1149865] Num frames 9100...
[2024-09-30 00:28:20,986][1149865] Num frames 9200...
[2024-09-30 00:28:21,079][1149865] Num frames 9300...
[2024-09-30 00:28:21,172][1149865] Num frames 9400...
[2024-09-30 00:28:21,264][1149865] Num frames 9500...
[2024-09-30 00:28:21,356][1149865] Num frames 9600...
[2024-09-30 00:28:21,451][1149865] Num frames 9700...
[2024-09-30 00:28:21,526][1149865] Avg episode rewards: #0: 34.030, true rewards: #0: 13.887
[2024-09-30 00:28:21,526][1149865] Avg episode reward: 34.030, avg true_objective: 13.887
[2024-09-30 00:28:21,591][1149865] Num frames 9800...
[2024-09-30 00:28:21,672][1149865] Num frames 9900...
[2024-09-30 00:28:21,757][1149865] Num frames 10000...
[2024-09-30 00:28:21,850][1149865] Num frames 10100...
[2024-09-30 00:28:21,945][1149865] Num frames 10200...
[2024-09-30 00:28:22,035][1149865] Num frames 10300...
[2024-09-30 00:28:22,128][1149865] Num frames 10400...
[2024-09-30 00:28:22,220][1149865] Num frames 10500...
[2024-09-30 00:28:22,312][1149865] Num frames 10600...
[2024-09-30 00:28:22,393][1149865] Num frames 10700...
[2024-09-30 00:28:22,474][1149865] Num frames 10800...
[2024-09-30 00:28:22,537][1149865] Avg episode rewards: #0: 32.886, true rewards: #0: 13.511
[2024-09-30 00:28:22,537][1149865] Avg episode reward: 32.886, avg true_objective: 13.511
[2024-09-30 00:28:22,621][1149865] Num frames 10900...
[2024-09-30 00:28:22,714][1149865] Num frames 11000...
[2024-09-30 00:28:22,806][1149865] Num frames 11100...
[2024-09-30 00:28:22,898][1149865] Num frames 11200...
[2024-09-30 00:28:22,990][1149865] Num frames 11300...
[2024-09-30 00:28:23,082][1149865] Num frames 11400...
[2024-09-30 00:28:23,165][1149865] Num frames 11500...
[2024-09-30 00:28:23,247][1149865] Num frames 11600...
[2024-09-30 00:28:23,338][1149865] Num frames 11700...
[2024-09-30 00:28:23,432][1149865] Num frames 11800...
[2024-09-30 00:28:23,522][1149865] Num frames 11900...
[2024-09-30 00:28:23,616][1149865] Num frames 12000...
[2024-09-30 00:28:23,730][1149865] Num frames 12100...
[2024-09-30 00:28:23,823][1149865] Num frames 12200...
[2024-09-30 00:28:23,904][1149865] Num frames 12300...
[2024-09-30 00:28:23,983][1149865] Num frames 12400...
[2024-09-30 00:28:24,063][1149865] Num frames 12500...
[2024-09-30 00:28:24,150][1149865] Num frames 12600...
[2024-09-30 00:28:24,230][1149865] Num frames 12700...
[2024-09-30 00:28:24,306][1149865] Num frames 12800...
[2024-09-30 00:28:24,390][1149865] Avg episode rewards: #0: 35.268, true rewards: #0: 14.268
[2024-09-30 00:28:24,391][1149865] Avg episode reward: 35.268, avg true_objective: 14.268
[2024-09-30 00:28:24,438][1149865] Num frames 12900...
[2024-09-30 00:28:24,516][1149865] Num frames 13000...
[2024-09-30 00:28:24,594][1149865] Num frames 13100...
[2024-09-30 00:28:24,675][1149865] Num frames 13200...
[2024-09-30 00:28:24,755][1149865] Num frames 13300...
[2024-09-30 00:28:24,833][1149865] Num frames 13400...
[2024-09-30 00:28:24,946][1149865] Avg episode rewards: #0: 33.076, true rewards: #0: 13.476
[2024-09-30 00:28:24,946][1149865] Avg episode reward: 33.076, avg true_objective: 13.476
[2024-09-30 00:28:42,313][1149865] Replay video saved to /home/luyang/workspace/rl/train_dir/default_experiment/replay.mp4!