File size: 66,376 Bytes
0036b14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
#!/usr/bin/env python
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the Flax library models for sequence to sequence speech recognition.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import math
import os
import sys
import time
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Union

import datasets
import numpy as np
from datasets import DatasetDict, load_dataset, load_metric
from tqdm import tqdm

import flax
import jax
import jax.numpy as jnp
import optax
import transformers
import wandb as wandb
from flax import core, jax_utils, struct, traverse_util
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from huggingface_hub import Repository
from models import FlaxSpeechEncoderDecoderModel
from optax._src import linear_algebra
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoProcessor,
    AutoTokenizer,
    HfArgumentParser,
    Seq2SeqTrainingArguments,
    is_tensorboard_available,
)
from transformers.file_utils import get_full_repo_name
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version


# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")

require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")

logger = logging.getLogger(__name__)


@flax.struct.dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
    freeze_feature_encoder: bool = field(
        default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
    )
    activation_dropout: float = field(
        default=0.1,
        metadata={
            "help": "The hidden activation dropout probability in the embeddings, encoder, and pooler."
        },
    )
    hidden_dropout: float = field(
        default=0.1,
        metadata={
            "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
        },
    )
    feat_proj_dropout: float = field(
        default=0.0,
        metadata={
            "help": "The feat proj dropout probability for feature encoder representations."
        },
    )
    mask_time_prob: float = field(
        default=0.1,
        metadata={
            "help": "The spec aug dropout probability for feature encoder representations."
        },
    )
    encoder_add_adapter: bool = field(
        default=True, metadata={"help": "Whether to add an adapter layer between the encoder and decoder."}
    )


@flax.struct.dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: str = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    dataset_cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Path to cache directory for saving and loading datasets"}
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
            "value if set."
        },
    )
    max_test_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of test examples to this "
            "value if set."
        },
    )
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
    text_column_name: str = field(
        default="text",
        metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
    )
    id_column_name: str = field(
        default="id",
        metadata={"help": "The name of the dataset column containing the id data. Defaults to 'id'"},
    )
    max_duration_in_seconds: float = field(
        default=20.0,
        metadata={
            "help": "Filter audio files in the training set that are longer than `max_duration_in_seconds` seconds"
        },
    )
    min_duration_in_seconds: float = field(
        default=0.0, metadata={"help": "Filter audio files in the training set that are shorter than `min_duration_in_seconds` seconds"}
    )
    max_eval_duration_in_seconds: float = field(
        default=None,
        metadata={
            "help": "Filter audio files in the eval/test set that are longer than `max_duration_in_seconds` seconds"
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    min_target_length: Optional[int] = field(
        default=0,
        metadata={
            "help": "The minimum total sequence length for target text after tokenization. Sequences shorter "
            "than this will be filtered."
        },
    )
    pad_input_to_multiple_of: Optional[int] = field(
        default=24000,
        metadata={
            "help": "If set will pad the input sequence to a multiple of the provided value. "
            "This is important to avoid triggering recompilations on TPU."
        },
    )
    pad_target_to_multiple_of: Optional[int] = field(
        default=None,
        metadata={
            "help": "If set will pad the target sequence to a multiple of the provided value. "
            "This is important to avoid triggering recompilations on TPU. If unspecified, will default to `max_target_length`, "
            " the equivalent of padding the targets to max length."
        },
    )
    preprocessing_only: bool = field(
        default=False,
        metadata={
            "help": "Whether to only do data preprocessing and skip training. "
            "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
            "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
            "so that the cached datasets can consequently be loaded in distributed training"
        },
    )
    train_split_name: str = field(
        default="train",
        metadata={
            "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
        },
    )
    eval_split_name: str = field(
        default="validation",
        metadata={
            "help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'"
        },
    )
    test_split_name: str = field(
        default="test",
        metadata={"help": "The name of the test data set split to use (via the datasets library). Defaults to 'test'"},
    )
    wandb_project: str = field(
        default="flax-speech-recognition-seq2seq",
        metadata={"help": "The name of the wandb project."},
    )
    wandb_name: str = field(
        default=None,
        metadata={"help": "The name of the wandb run."},
    )
    wandb_job_type: str = field(
        default="Seq2Seq",
        metadata={"help": "The name of the wandb job type."},
    )
    log_first_ids: bool = field(
        default=True,
        metadata={
            "help": "Whether to log the first id's from the dataset. Defaults to `True`. If `False`, will log the first id's returned by the grouped length sampler."
        },
    )


# @flax.struct.dataclass
@dataclass
class FlaxSeq2SeqTrainingArguments(Seq2SeqTrainingArguments):
    precision: str = field(
        default="full",
        metadata={
            "help": "Whether to enable mixed-precision training. If true, the optimizer is stored in half-precision (bfloat16) and computations are executed in half-precision"
            "**Note that this only specifies the dtype of the computation and optimizer state. It does not influence the dtype of model parameters.**"
        },
    )
    matmul_precision: str = field(
        default="default",
        metadata={
            "help": "Default floating-point precision of internal computations used in TPU matrix multiplications and convolutions. "
            "This configuration option controls the default precision for JAX operations that take an optional precision argument (e.g. `lax.conv_general_dilated` and `lax.dot`). "
            "This configuration option does not change the behaviours of such calls with explicit precision arguments; "
            "it only changes the behaviors of calls with no such argument provided. "
            "One of `['highest', 'float32', 'high', 'bfloat16_3x', 'default', 'bfloat16', 'fastest', None]`."
        },
    )
    generation_length_penalty: float = field(
        default=1,
        metadata={
            "help": "Exponential penalty to the length. 1.0 (default) means no penalty. Set to values < 1.0 in order to encourage the model"
            "to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer sequences."
        },
    )
    final_generation_max_length: int = field(
        default=None,
        metadata={
            "help": "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. If unspecified, will default "
            "to the `max_length` value of the model configuration."
        },
    )
    final_generation_num_beams: int = field(
        default=None,
        metadata={
            "help": "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. If unspecified, will default "
            "to the `num_beams` value of the model configuration."
        },
    )

    def __post_init__(self):
        if self.final_generation_max_length is None:
            self.final_generation_max_length = self.generation_max_length
        if self.final_generation_num_beams is None:
            self.final_generation_num_beams = self.generation_num_beams


def to_fp32(t):
    return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)


def to_bf16(t):
    return jax.tree_map(lambda x: x.astype(jnp.bfloat16) if x.dtype == jnp.float32 else x, t)


class MixedPrecisionTrainState(struct.PyTreeNode):
    """Train state for use with a single Optax optimizer.
    Adapted from flax train_state https://github.com/google/flax/blob/main/flax/training/train_state.py

    Synopsis::

        state = TrainState.create(
            apply_fn=model.apply,
            params=variables['params'],
            tx=tx)
        grad_fn = jax.grad(make_loss_fn(state.apply_fn))
        for batch in data:
          grads = grad_fn(state.params, batch)
          state = state.apply_gradients(grads=grads)

    Args:
      step: Counter starts at 0 and is incremented by every call to
        `.apply_gradients()`.
      apply_fn: Usually set to `model.apply()`. Kept in this dataclass for
        convenience to have a shorter params list for the `train_step()` function
        in your training loop.
      params: The parameters to be updated by `tx` and used by `apply_fn`.
      tx: An Optax gradient transformation.
      opt_state: The state for `tx`.
      dropout_rng: PRNG key for stochastic operations.
      bf16: Whether to use bf16 16-bit (mixed) precision training instead of 32-bit training.
    """

    step: int
    apply_fn: Callable = struct.field(pytree_node=False)
    params: core.FrozenDict[str, Any]
    tx: optax.GradientTransformation = struct.field(pytree_node=False)
    opt_state: optax.OptState
    dropout_rng: jnp.ndarray
    max_grad_norm: Optional[float] = 1.0

    def apply_gradients(self, *, grads, to_dtype, **kwargs):
        """Updates `step`, `params`, `opt_state` and `**kwargs` in return value.

        Note that internally this function calls `.tx.update()` followed by a call
        to `optax.apply_updates()` to update `params` and `opt_state`.

        Args:
          grads: Gradients that have the same pytree structure as `.params`.
          **kwargs: Additional dataclass attributes that should be `.replace()`-ed.

        Returns:
          An updated instance of `self` with `step` incremented by one, `params`
          and `opt_state` updated by applying `grads`, and additional attributes
          replaced as specified by `kwargs`.
        """

        # clip gradients by global l2 norm
        casted_max_grad_norm = to_dtype(self.max_grad_norm)
        g_norm = linear_algebra.global_norm(grads)
        g_norm = jnp.maximum(casted_max_grad_norm, g_norm)
        grads = jax.tree_map(lambda t: (t / g_norm) * casted_max_grad_norm, grads)

        # perform update step in fp32 and subsequently downcast optimizer states if mixed precision training
        # grads and opt_state in bf16 (need to upcast), params in fp32 (leave as is)
        updates, new_opt_state = self.tx.update(to_fp32(grads), to_fp32(self.opt_state), self.params)

        new_params = optax.apply_updates(self.params, updates)
        return self.replace(
            step=self.step + 1,
            params=new_params,
            opt_state=to_dtype(new_opt_state),
            **kwargs,
        )

    @classmethod
    def create(cls, *, apply_fn, params, tx, to_dtype, **kwargs):
        """Creates a new instance with `step=0` and initialized `opt_state`."""
        # downcast optimizer state to bf16 if mixed-precision training
        opt_state = tx.init(to_dtype(params)) if tx is not None else None
        return cls(
            step=0,
            apply_fn=apply_fn,
            params=params,
            tx=tx,
            opt_state=opt_state,
            **kwargs,
        )

    def replicate(self):
        return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))


def pad_to_max_length(data, tokenizer):
    # Get lengths of each row of data
    lens = np.array([len(i) for i in data])

    # Mask of valid places in each row
    mask = np.arange(lens.max()) < lens[:, None]

    # Setup output array and put elements from data into masked positions
    out = np.ones_like(mask, dtype=data.dtype) * tokenizer.pad_token_id
    out[mask] = np.concatenate(data)
    return out


def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray:
    """
    Shift label ids one token to the right.
    """
    shifted_label_ids = np.zeros_like(label_ids)
    shifted_label_ids[:, 1:] = label_ids[:, :-1]
    shifted_label_ids[:, 0] = decoder_start_token_id

    return shifted_label_ids


@flax.struct.dataclass
class FlaxDataCollatorSpeechSeq2SeqWithPadding:
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        processor ([`Wav2Vec2Processor`])
            The processor used for proccessing the data.
        decoder_start_token_id (:obj: `int`)
            The begin-of-sentence of the decoder.
        input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
            See above for details.
        max_input_length (:obj:`float`, `optional`):
            Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
        max_target_length (:obj:`int`, `optional`):
            Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
        pad_input_to_multiple_of (:obj:`int`, `optional`):
            If set will pad the input sequence to a multiple of the provided value.
            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
            7.5 (Volta).
        pad_target_to_multiple_of (:obj:`int`, `optional`):
            If set will pad the target sequence to a multiple of the provided value.
            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
            7.5 (Volta).
    """

    processor: Any
    decoder_start_token_id: int
    input_padding: Union[bool, str] = "longest"
    target_padding: Union[bool, str] = "max_length"
    max_input_length: Optional[float] = None
    max_target_length: Optional[int] = None
    pad_input_to_multiple_of: Optional[int] = None
    pad_target_to_multiple_of: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        input_features = [{"input_values": feature["input_values"]} for feature in features]
        input_ids = [feature["input_id"] for feature in features]
        label_features = [{"input_ids": feature["labels"]} for feature in features]

        # reformat list to dict and set to pytorch format
        batch = self.processor.feature_extractor.pad(
            input_features,
            max_length=self.max_input_length,
            padding=self.input_padding,
            pad_to_multiple_of=self.pad_input_to_multiple_of,
            return_tensors="np",
        )

        labels_batch = self.processor.tokenizer.pad(
            label_features,
            max_length=self.max_target_length,
            padding=self.target_padding,
            pad_to_multiple_of=self.pad_target_to_multiple_of,
            return_tensors="np",
        )

        # if bos token is appended in previous tokenization step,
        # cut bos token here as it's append later anyways
        labels = labels_batch["input_ids"]
        if (labels[:, 0] == self.decoder_start_token_id).all().item():
            labels = labels[:, 1:]
            labels_batch.attention_mask = labels_batch.attention_mask[:, 1:]

        decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id)

        # replace padding with -100 to ignore correctly when computing the loss
        labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1))
        labels = labels.filled(fill_value=-100)

        batch["inputs"] = batch.pop("input_values")
        batch["input_ids"] = input_ids
        batch["labels"] = labels
        batch["decoder_input_ids"] = decoder_input_ids

        return batch


def get_grouped_indices(
    dataset, batch_size: int, rng: Optional[List[int]] = None, mega_batch_mult: Optional[int] = None
) -> np.array:
    """
    Adapted from the `get_length_grouped_indices` function in the PyTorch Trainer utils file (https://github.com/huggingface/transformers/blob/main/src/transformers/trainer_pt_utils.py#L486)
    Function that returns a list of indices in which each slice of `batch_size` consecutive indices correspond to elements of similar
    lengths. To do this, the indices are:

    - randomly permuted (if a JAX rng is specified)
    - grouped in mega-batches of size `mega_batch_mult * batch_size`
    - sorted by length in each mega-batch

    The result is the concatenation of all mega-batches, with the batch of `batch_size` containing the element of
    maximum length placed first, so that an OOM happens sooner rather than later.
    """
    lengths = dataset["input_length"]

    # Default for mega_batch_mult: 50 or the number to get 4 megabatches, whichever is smaller.
    if mega_batch_mult is None:
        mega_batch_mult = min(len(lengths) // (batch_size * 4), 50)
        # Just in case, for tiny datasets
        if mega_batch_mult == 0:
            mega_batch_mult = 1

    # We need to use JAX for the random permutation as the PRNG key will be set based on the seed outside of the sampler.
    num_samples = len(lengths)
    indices = jax.random.permutation(rng, np.arange(num_samples)) if rng is not None else np.arange(num_samples)
    indices = np.asarray(indices)

    megabatch_size = mega_batch_mult * batch_size
    megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
    megabatches = [list(sorted(megabatch, key=lambda i: lengths[i], reverse=True)) for megabatch in megabatches]

    # The rest is to get the biggest batch first.
    # Since each megabatch is sorted by descending length, the longest element is the first
    megabatch_maximums = [lengths[megabatch[0]] for megabatch in megabatches]
    max_idx = np.argmax(megabatch_maximums).item()
    # Switch to put the longest batch in first position
    # (note that this is different to the PT grouped sampler in which we only put the longest element in the first position, and not its batch)
    megabatches[0], megabatches[max_idx] = megabatches[max_idx], megabatches[0]

    megabatches = np.array([i for megabatch in megabatches for i in megabatch])

    return megabatches


def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last_batch=True) -> np.ndarray:
    """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by
    the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned."""
    num_samples = len(samples_idx)
    if drop_last_batch:
        samples_to_remove = num_samples % batch_size
        if samples_to_remove != 0:
            samples_idx = samples_idx[:-samples_to_remove]
        sections_split = num_samples // batch_size
        samples_idx = samples_idx.reshape((sections_split, batch_size))
    else:
        sections_split = math.ceil(num_samples / batch_size)
        samples_idx = np.array_split(samples_idx, sections_split)
    return samples_idx


def write_train_metric(summary_writer, train_metrics, train_time, step):
    summary_writer.scalar("train_time", train_time, step)

    train_metrics = get_metrics(train_metrics)
    for key, vals in train_metrics.items():
        tag = f"train_{key}"
        for i, val in enumerate(vals):
            summary_writer.scalar(tag, val, step - len(vals) + i + 1)


def write_eval_metric(summary_writer, eval_metrics, step, pred_str=None):
    for metric_name, value in eval_metrics.items():
        summary_writer.scalar(f"eval_{metric_name}", value, step)

    if pred_str is not None:
        # write output actual predictions for debugging
        summary_writer.text("eval_predictions", "\n".join(pred_str), step)


def write_wandb_log(metrics, step, prefix=None):
    if jax.process_index() == 0:
        log_metrics = {}
        for k, v in metrics.items():
            if "layer" in k:
                log_metrics[f"{k}/"] = v
            elif prefix is not None:
                log_metrics[f"{prefix}/{k}"] = v
            else:
                log_metrics[k] = v
        wandb.log(log_metrics, step)


def write_wandb_pred(pred_str, label_str, eval_ids, step, prefix="eval", top_ids=None, final_step=True):
    if jax.process_index() == 0:
        top_ids = top_ids if top_ids else eval_ids
        num_beams = len(pred_str)
        # convert str data to a wandb compatible format
        str_data = []
        for id in top_ids:
            if id in eval_ids:
                idx = eval_ids.index(id)
                str_data.append([eval_ids[idx], label_str[idx]] + [pred_str[beam][idx] for beam in range(num_beams)])
        columns = ["id", "label_str"] + [f"beam_{i + 1}" for i in range(num_beams)]
        wandb.log(
            {f"{prefix}/step_{int(step / 1000)}k": wandb.Table(columns=columns, data=str_data[:50])},
            step,
        )
        if final_step:
            str_data = np.array(str_data)
            wandb.log(
                {f"{prefix}/step_{int(step / 1000)}k_all": wandb.Table(columns=columns, data=str_data[:200000])},
                step,
            )
            str_data = str_data[str_data[:, 1] != str_data[:, 2]]
            wandb.log(
                {f"{prefix}/step_{int(step / 1000)}k_incorrect": wandb.Table(columns=columns, data=str_data[:200000])},
                step,
            )


def create_learning_rate_fn(
    num_train_steps: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
    """Returns a linear warmup, linear_decay learning rate function."""
    warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
    decay_fn = optax.linear_schedule(
        init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
    )
    schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
    return schedule_fn


def main():
    # 1. Parse input arguments
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FlaxSeq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # 2. Setup logging
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    # Set the verbosity to info of the Transformers logger.
    # We only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set up wandb run
    if jax.process_index() == 0:
        wandb.init(project=data_args.wandb_project, name=data_args.wandb_name, job_type=data_args.wandb_job_type)

    logger.info("Training/evaluation parameters %s", training_args)

    # Set the default TPU matmul precision and display the number of devices
    jax.config.update("jax_default_matmul_precision", training_args.matmul_precision)
    logger.info(f"JAX devices: {jax.device_count()}, matmul precision: {training_args.matmul_precision}")

    # TODO: 3. Detecting last checkpoint and eventually continue from last checkpoint
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # 4. Load dataset
    raw_datasets = DatasetDict()

    if training_args.do_train:
        raw_datasets["train"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=data_args.train_split_name,
            cache_dir=data_args.dataset_cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )

    if training_args.do_eval:
        raw_datasets["eval"] = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
            split=data_args.eval_split_name,
            cache_dir=data_args.dataset_cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )

    if training_args.do_predict:
        test_split = data_args.test_split_name.split("+")
        for split in test_split:
            raw_datasets[split] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=split,
                cache_dir=data_args.dataset_cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )

    if not training_args.do_train and not training_args.do_eval and not training_args.do_predict:
        raise ValueError(
            "Cannot not train, not do evaluation and not do prediction. At least one of "
            "training, evaluation or prediction has to be done."
        )

    # if not training, there is no need to run multiple epochs
    if not training_args.do_train:
        training_args.num_train_epochs = 1

    if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
        raise ValueError(
            f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--audio_column_name` to the correct audio column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
        )

    if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
        raise ValueError(
            f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--text_column_name` to the correct text column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
        )

    if data_args.log_first_ids and data_args.id_column_name not in next(iter(raw_datasets.values())).column_names:
        raise ValueError(
            f"--id_column_name {data_args.id_column_name} not found in dataset '{data_args.dataset_name}'. "
            "Make sure to set `--id_column_name` to the correct id column - one of "
            f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
        )

    # 5. Load pretrained model, tokenizer, and feature extractor
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # update config according to training and model args
    config.encoder.update(
        {
            "gradient_checkpointing": training_args.gradient_checkpointing,
            "hidden_dropout": model_args.hidden_dropout,
            "activation_dropout": model_args.activation_dropout,
            "feat_proj_dropout": model_args.feat_proj_dropout,
            "mask_time_prob": model_args.mask_time_prob,
            "add_adapter": model_args.encoder_add_adapter,
        }
    )
    config.decoder.update(
        {
            "gradient_checkpointing": training_args.gradient_checkpointing,
            "dropout": model_args.hidden_dropout,
            "activation_dropout": model_args.activation_dropout,
        }
    )

    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    if training_args.precision == "full_mixed":
        dtype = jnp.bfloat16
        training_args.mixed_precision = True
    elif training_args.precision == "half_mixed":
        dtype = jnp.bfloat16
        training_args.mixed_precision = False
    else:
        dtype = jnp.float32
        training_args.mixed_precision = False

    model = FlaxSpeechEncoderDecoderModel.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        dtype=dtype,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

    # 6. Resample speech dataset ALWAYS
    raw_datasets = raw_datasets.cast_column(data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate))

    # 7. Preprocessing the datasets.
    # We need to read the audio files as arrays and tokenize the targets.
    max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
    min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate)
    max_eval_input_length = int(data_args.max_eval_duration_in_seconds * feature_extractor.sampling_rate) if data_args.max_eval_duration_in_seconds else None
    max_target_length = data_args.max_target_length
    min_target_length = data_args.min_target_length
    pad_input_to_multiple_of = data_args.pad_input_to_multiple_of
    pad_target_to_multiple_of = data_args.pad_target_to_multiple_of
    audio_column_name = data_args.audio_column_name
    num_workers = data_args.preprocessing_num_workers
    text_column_name = data_args.text_column_name
    id_column_name = data_args.id_column_name
    model_input_name = feature_extractor.model_input_names[0]
    log_first_ids = data_args.log_first_ids

    if training_args.do_train and data_args.max_train_samples is not None:
        raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))

    if training_args.do_eval and data_args.max_eval_samples is not None:
        raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))

    if training_args.do_predict and data_args.max_test_samples is not None:
        for split in test_split:
            raw_datasets[split] = raw_datasets[split].select(range(data_args.max_eval_samples))


    def prepare_dataset(batch):
        # Pre-process audio
        sample = batch[audio_column_name]

        # normalise audio (mean, std) to (0, 1)
        inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
        # process audio length
        batch[model_input_name] = inputs.input_values[0]
        batch["input_length"] = len(batch["input_values"])
        batch["input_id"] = batch[id_column_name] if log_first_ids else None

        input_str = batch[text_column_name]
        # Finally, we tokenize the processed text
        batch["labels"] = tokenizer(input_str).input_ids
        batch["labels_length"] = len(batch["labels"])
        return batch

    vectorized_datasets = raw_datasets.map(
        prepare_dataset,
        remove_columns=next(iter(raw_datasets.values())).column_names,
        num_proc=num_workers,
        desc="preprocess train dataset",
    )

    # filter training data with inputs longer than max_input_length
    def is_audio_in_length_range(length):
        return min_input_length < length < max_input_length

    if training_args.do_train:
        vectorized_datasets["train"] = vectorized_datasets["train"].filter(
            is_audio_in_length_range,
            num_proc=num_workers,
            input_columns=["input_length"],
        )

    if max_eval_input_length is not None:
        # filter training data with inputs longer than max_input_length
        def is_eval_audio_in_length_range(length):
            return min_input_length < length < max_eval_input_length

        if training_args.do_eval:
            vectorized_datasets["eval"] = vectorized_datasets["eval"].filter(
                is_eval_audio_in_length_range,
                num_proc=num_workers,
                input_columns=["input_length"],
            )

        if training_args.do_test:
            for split in test_split:
                vectorized_datasets[split] = vectorized_datasets[split].filter(
                    is_eval_audio_in_length_range,
                    num_proc=num_workers,
                    input_columns=["input_length"],
                )

    # filter data with targets shorter than min_target_length or longer than max_target_length
    def is_labels_in_length_range(length):
        return min_target_length < length < max_target_length

    if training_args.do_train:
        vectorized_datasets["train"] = vectorized_datasets["train"].filter(
            is_labels_in_length_range,
            num_proc=num_workers,
            input_columns=["labels_length"],
        )

    # for large datasets it is advised to run the preprocessing on a
    # single machine first with `args.preprocessing_only` since there will mostly likely
    # be a timeout when running the script in distributed mode.
    # In a second step `args.preprocessing_only` can then be set to `False` to load the
    # cached dataset
    if data_args.preprocessing_only:
        cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
        logger.info(f"Data preprocessing finished. Files cached at {cache}.")
        return

    # 8. Load Metrics
    wer_metric = load_metric("wer")
    cer_metric = load_metric("cer")

    def compute_metrics(pred_ids: List[List[int]], label_ids: List[List[int]]):
        label_ids = (
            pad_to_max_length(np.array(label_ids, dtype="object"), tokenizer)
            if pad_target_to_multiple_of
            else label_ids
        )

        padded_ids = np.where(np.asarray(label_ids) == -100, tokenizer.pad_token_id, np.asarray(label_ids))
        # we do not want to group tokens when computing the metrics
        label_str = tokenizer.batch_decode(padded_ids, skip_special_tokens=True)

        pred_ids = np.array(pred_ids)
        num_beams = pred_ids.shape[1]
        # decode on a beam-by-beam basis
        pred_str = [
            tokenizer.batch_decode(pred_ids[:, beam, :], skip_special_tokens=True)
            for beam in reversed(range(num_beams))
        ]
        # compute word/character error rate for top beam
        wer = wer_metric.compute(predictions=pred_str[0], references=label_str)
        cer = cer_metric.compute(predictions=pred_str[0], references=label_str)

        return {"wer": wer, "cer": cer}, pred_str, label_str

    # 9. Save feature extractor, tokenizer and config
    feature_extractor.save_pretrained(training_args.output_dir)
    tokenizer.save_pretrained(training_args.output_dir)
    config.save_pretrained(training_args.output_dir)

    processor = AutoProcessor.from_pretrained(training_args.output_dir)

    data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding(
        processor=processor,
        decoder_start_token_id=model.config.decoder_start_token_id,
        input_padding="longest",
        target_padding="longest",
        max_target_length=max_target_length,
        pad_input_to_multiple_of=pad_input_to_multiple_of,
        pad_target_to_multiple_of=pad_target_to_multiple_of if pad_target_to_multiple_of else max_target_length,
    )

    # Enable tensorboard only on the master node
    has_tensorboard = is_tensorboard_available()
    if has_tensorboard and jax.process_index() == 0:
        try:
            from flax.metrics.tensorboard import SummaryWriter

            summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
        except ImportError as ie:
            has_tensorboard = False
            logger.warning(
                f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
            )
    else:
        logger.warning(
            "Unable to display metrics through TensorBoard because the package is not installed: "
            "Please run `pip install tensorboard` to enable."
        )

    # 10. Handle the repository creation
    if training_args.push_to_hub:
        with open(os.path.join(training_args.output_dir, ".gitattributes"), "r+") as f:
            git_lfs_extensions = f.read()
            if "*.wandb" not in git_lfs_extensions:
                f.write("*.wandb filter=lfs diff=lfs merge=lfs -text")
        if training_args.hub_model_id is None:
            repo_name = get_full_repo_name(
                Path(training_args.output_dir).absolute().name, token=training_args.hub_token
            )
        else:
            repo_name = training_args.hub_model_id
        repo = Repository(training_args.output_dir, clone_from=repo_name)

    # 11. Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constants
    max_steps = int(training_args.max_steps)
    gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    batch_size_per_update = train_batch_size * gradient_accumulation_steps
    per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
    to_dtype = to_bf16 if training_args.mixed_precision else to_fp32

    if training_args.do_train:
        num_train_samples = len(vectorized_datasets["train"])
        steps_per_epoch = num_train_samples // batch_size_per_update
        if max_steps > 0:
            num_epochs = -(training_args.max_steps // -steps_per_epoch)
            total_train_steps = max_steps
        else:
            num_epochs = int(training_args.num_train_epochs)
            total_train_steps = steps_per_epoch * num_epochs

        # Create learning rate schedule
        linear_decay_lr_schedule_fn = create_learning_rate_fn(
            total_train_steps,
            training_args.warmup_steps,
            training_args.learning_rate,
        )

        # We use Optax's "masking" functionality to not apply weight decay
        # to bias and LayerNorm scale parameters. decay_mask_fn returns a
        # mask boolean with the same structure as the parameters.
        # The mask is True for parameters that should be decayed.
        # Note that this mask is specifically adapted for FlaxWav2Vec2 and FlaxBart.
        # For FlaxT5, one should correct the layer norm parameter naming
        # accordingly - see `run_t5_mlm_flax.py` e.g.
        def decay_mask_fn(params):
            flat_params = traverse_util.flatten_dict(params)
            layer_norm_params = [
                (name, "scale")
                for name in ["layer_norm", "self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"]
            ]
            flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params}
            return traverse_util.unflatten_dict(flat_mask)

        if training_args.adafactor:
            # Create Adafactor optimizer
            optim = optax.adafactor(
                learning_rate=linear_decay_lr_schedule_fn,
                dtype_momentum=jnp.bfloat16 if training_args.mixed_precision else jnp.float32,
                weight_decay_rate=training_args.weight_decay,
                weight_decay_mask=decay_mask_fn,
            )
        else:
            # Create AdamW optimizer
            optim = optax.adamw(
                learning_rate=linear_decay_lr_schedule_fn,
                b1=training_args.adam_beta1,
                b2=training_args.adam_beta2,
                eps=training_args.adam_epsilon,
                weight_decay=training_args.weight_decay,
                mask=decay_mask_fn,
            )
    else:
        num_epochs = 0
        total_train_steps = 0
        num_train_samples = 0
        optim = None

    # Setup train state
    state = MixedPrecisionTrainState.create(
        apply_fn=model.__call__,
        params=model.params,
        tx=optim,
        to_dtype=to_dtype,
        dropout_rng=dropout_rng,
        max_grad_norm=training_args.max_grad_norm,
    )

    # Cross entropy loss
    def loss_fn(logits, labels):
        vocab_size = logits.shape[-1]
        # optax onehot always returns a float32 device array, need to downcast if performing mixed precision training
        onehot_targets = to_dtype(onehot(labels, vocab_size))
        loss = optax.softmax_cross_entropy(logits, onehot_targets)
        # ignore padded tokens from loss, i.e. where labels are not set to -100
        padding = labels >= 0
        loss = loss * padding
        loss = loss.sum()
        num_labels = padding.sum()
        return loss, num_labels

    # Define gradient update step fn
    def train_step(state, batch):
        # only one single rng per grad step, with or without accumulation, as the graph should be identical over one effective training batch
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params, minibatch):
            labels = minibatch.pop("labels")
            logits = state.apply_fn(
                **minibatch,
                params=params,
                dropout_rng=dropout_rng,
                freeze_feature_encoder=model_args.freeze_feature_encoder,
                train=True,
            )[0]
            loss, num_labels = loss_fn(logits, labels)
            return loss, num_labels

        grad_fn = jax.value_and_grad(compute_loss, has_aux=True)

        if gradient_accumulation_steps == 1:
            (loss, num_labels), grad = grad_fn(to_dtype(state.params), batch)

        # Custom gradient accumulation
        else:
            # add a first dimension over gradient_accumulation_steps for minibatch slices
            batch = jax.tree_map(
                lambda x: x.reshape(
                    gradient_accumulation_steps, training_args.per_device_train_batch_size, *x.shape[1::]
                ),
                batch,
            )

            def accum_minibatch_step(accum_grad, minibatch):
                # compute loss, num labels and grad over minibatch and accumulate
                (loss, num_labels), grad = grad_fn(to_dtype(state.params), minibatch)
                return jax.tree_map(jnp.add, accum_grad, grad), (loss, num_labels)

            # create an initial state for accumulating losses, num labels and gradients
            init_grad = jax.tree_map(jnp.zeros_like, to_dtype(state.params))
            # loop accum minibatch step over the number of gradient accumulation steps
            grad, (loss, num_labels) = jax.lax.scan(accum_minibatch_step, init_grad, batch)

        grad = jax.lax.psum(grad, "batch")
        loss = jax.lax.psum(loss.sum(), "batch")
        total_samples = jax.lax.psum(num_labels.sum(), "batch")
        grad = jax.tree_map(lambda g: g / total_samples, grad)
        loss = jax.tree_map(lambda l: l / total_samples, loss)

        # update state
        new_state = state.apply_gradients(
            grads=grad,
            dropout_rng=new_dropout_rng,
            to_dtype=to_dtype,
        )

        # compute gradient norms over all layers, total encoder, total decoder and global for detailed monitoring
        layer_grad_norm = jax.tree_map(jnp.linalg.norm, grad)
        logs = {
            "layer_grad_norm": layer_grad_norm,
            "encoder_grad_norm": jnp.linalg.norm(jax.tree_util.tree_leaves(layer_grad_norm["encoder"])),
            "decoder_grad_norm": jnp.linalg.norm(jax.tree_util.tree_leaves(layer_grad_norm["decoder"])),
        }
        logs["grad_norm"] = jnp.linalg.norm([logs["encoder_grad_norm"], logs["decoder_grad_norm"]])

        # compute parameter norms over all layers, total encoder, total decoder and global for detailed monitoring
        layer_param_norm = jax.tree_map(jnp.linalg.norm, new_state.params)
        logs["layer_param_norm"] = layer_param_norm
        logs["encoder_param_norm"] = jnp.linalg.norm(jax.tree_util.tree_leaves(layer_param_norm["encoder"]))
        logs["decoder_param_norm"] = jnp.linalg.norm(jax.tree_util.tree_leaves(layer_param_norm["decoder"]))
        logs["param_norm"] = jnp.linalg.norm([logs["encoder_param_norm"], logs["decoder_param_norm"]])

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
        metrics.update(logs)

        metrics = jax.lax.pmean(metrics, axis_name="batch")
        # metrics = to_fp32(metrics)

        return new_state, metrics

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]
        loss, num_labels = loss_fn(logits, labels)

        total_samples = jax.lax.psum(num_labels, "batch")
        loss = jax.lax.psum(loss, "batch")
        loss = jax.tree_map(lambda l: l / total_samples, loss)

        # summarize metrics
        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        # metrics = to_fp32(metrics)
        return metrics

    # Define generation function
    gen_kwargs = {
        "max_length": training_args.generation_max_length,
        "num_beams": training_args.generation_num_beams,
        "length_penalty": training_args.generation_length_penalty,
    }
    final_gen_kwargs = {
        "max_length": training_args.final_generation_max_length,
        "num_beams": training_args.final_generation_num_beams,
        "length_penalty": training_args.generation_length_penalty,
    }

    def generate_step(params, batch):
        model.params = params
        output_ids = model.generate(batch["inputs"], **gen_kwargs)
        return output_ids.sequences

    def final_generate_step(params, batch):
        model.params = params
        output_ids = model.generate(batch["inputs"], **final_gen_kwargs)
        return output_ids.sequences

    # Create parallel version of the train and eval step
    if training_args.do_train:
        p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))

    if training_args.do_eval or training_args.do_predict:
        p_eval_step = jax.pmap(eval_step, "batch")

    if training_args.predict_with_generate:
        p_generate_step = jax.pmap(generate_step, "batch")
        p_final_generate_step = jax.pmap(final_generate_step, "batch")

    def run_evaluation(step, final_step=False):
        if training_args.do_eval:
            # ======================== Evaluating ==============================
            eval_metrics = []
            eval_preds = []
            eval_ids = []
            eval_labels = []

            # Generate eval set by sequentially sampling indices from the eval dataset and grouping by length
            eval_samples_idx = get_grouped_indices(vectorized_datasets["eval"], eval_batch_size)
            eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last_batch=False)

            for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
                samples = [vectorized_datasets["eval"][int(idx)] for idx in batch_idx]
                batch = data_collator(samples)
                eval_ids.extend(batch.pop("input_ids"))
                labels = batch["labels"]

                metrics = pad_shard_unpad(p_eval_step, static_return=True)(state.params, batch.data, min_device_batch=per_device_eval_batch_size)
                eval_metrics.append(metrics)

                # generation
                if training_args.predict_with_generate:
                    if not final_step:
                        generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch.data, min_device_batch=per_device_eval_batch_size)
                        eval_preds.extend(
                            jax.device_get(
                                generated_ids.reshape(-1, gen_kwargs["num_beams"], gen_kwargs["max_length"])
                            )
                        )
                    else:
                        generated_ids = pad_shard_unpad(p_final_generate_step)(state.params, batch.data, min_device_batch=per_device_eval_batch_size)
                        eval_preds.extend(
                            jax.device_get(
                                generated_ids.reshape(
                                    -1, final_gen_kwargs["num_beams"], final_gen_kwargs["max_length"]
                                )
                            )
                        )
                    eval_labels.extend(labels)

            # normalize eval metrics
            eval_metrics = get_metrics(eval_metrics)
            eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
            eval_metrics = to_fp32(eval_metrics)

            # compute error rate metric and get predicted string (for debugging)
            error_rate_desc = ""
            pred_str = []
            label_str = []
            if training_args.predict_with_generate:
                error_rate_metric, pred_str, label_str = compute_metrics(eval_preds, eval_labels)
                eval_metrics.update(error_rate_metric)
                error_rate_desc = " ".join([f"Eval {key}: {value} |" for key, value in error_rate_metric.items()])

            # Print metrics and update progress bar
            desc = f"Step... ({step}/{total_train_steps} | Eval Loss: {eval_metrics['loss']} | {error_rate_desc})"
            epochs.write(desc)
            epochs.desc = desc

            # Save metrics
            write_wandb_log(eval_metrics, step, prefix="eval")
            write_wandb_pred(
                pred_str,
                label_str,
                eval_ids,
                step,
                top_ids=vectorized_datasets["eval"]["input_id"] if data_args.log_first_ids else None,
                final_step=final_step,
            )
            # if has_tensorboard and jax.process_index() == 0:
            # write_eval_metric(summary_writer, eval_metrics, step, pred_str=pred_str)

    def save_checkpoint(step):
        # save and push checkpoint to the hub
        if jax.process_index() == 0:
            params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
            model.save_pretrained(training_args.output_dir, params=params)
            tokenizer.save_pretrained(training_args.output_dir)
            if training_args.push_to_hub:
                repo.push_to_hub(commit_message=f"{wandb.run.id}: saving weights and logs of step {int(step / 1000)}k", blocking=False)

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {num_train_samples}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(f"  Num gradient accumulation steps = {gradient_accumulation_steps}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {batch_size_per_update}")
    logger.info(f"  Total optimization steps = {total_train_steps}")
    logger.info(f"  Gradient checkpointing: {config.encoder.gradient_checkpointing}")
    logger.info(f"  Use scan: {config.encoder.use_scan}")
    logger.info(f"  Fuse matmuls: {config.encoder.fuse_matmuls}")

    train_time = cur_step = 0
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    for epoch in epochs:
        if training_args.do_train:
            # ======================== Training ================================
            train_start = time.time()

            # Create sampling rng
            rng, input_rng = jax.random.split(rng)

            # Generate an epoch by randomly shuffling sampling indices from the train dataset and grouping by length
            train_samples_idx = get_grouped_indices(vectorized_datasets["train"], batch_size_per_update, input_rng)
            train_batch_idx = generate_batch_splits(train_samples_idx, batch_size_per_update, drop_last_batch=True)

            # Gather the indices for creating the batch and do a training step
            for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1), 1):
                samples = [vectorized_datasets["train"][int(idx)] for idx in batch_idx]
                batch = data_collator(samples)
                batch.pop("input_ids")
                batch = shard(batch.data)
                state, train_metric = p_train_step(state, batch)

                cur_step = epoch * (num_train_samples // batch_size_per_update) + step

                if cur_step % training_args.logging_steps == 0:
                    # Save metrics
                    train_metric = unreplicate(train_metric)
                    train_time += time.time() - train_start
                    # need to upcast all device arrays to fp32 for wandb logging (jnp.bfloat16 not supported) -> do this here OR in train_step
                    write_wandb_log(to_fp32(train_metric), cur_step, prefix="train")
                    # we won't log to tensorboard for now (it is fiddly logging param and grad norms on a layer-by-layer basis)
                    # if has_tensorboard and jax.process_index() == 0:
                    # write_train_metric(summary_writer, train_metrics, train_time, cur_step)

                    epochs.write(
                        f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']}, Gradient Norm: {train_metric['grad_norm']})"
                    )

                if cur_step % total_train_steps == 0:
                    break

                if training_args.eval_steps and cur_step % training_args.eval_steps == 0:
                    # run beam search at each eval step
                    run_evaluation(cur_step, final_step=False)

                if cur_step % training_args.save_steps == 0:
                    save_checkpoint(cur_step)

            if training_args.eval_steps == 0 and (epoch + 1) != num_epochs:
                # run evaluation at the end of the epoch if eval steps are not specified
                run_evaluation(cur_step, final_step=False)
                save_checkpoint(cur_step)

    if training_args.do_train:
        save_checkpoint(cur_step)

    cur_step = max_steps if max_steps > 0 else cur_step  # set step to max steps so that eval happens in alignment with training

    if training_args.do_eval:
        run_evaluation(cur_step, final_step=True)

    # TODO: collapse 'do_predict' into the run_evaluation function
    if training_args.do_predict:
        # ======================== Prediction ==============================
        for split in test_split:
            pred_metrics = []
            pred_generations = []
            pred_ids = []
            pred_labels = []

            # Generate eval set by sequentially sampling indices from the eval dataset and grouping by length
            pred_samples_idx = get_grouped_indices(vectorized_datasets[split], eval_batch_size)
            pred_batch_idx = generate_batch_splits(pred_samples_idx, eval_batch_size, drop_last_batch=False)

            for i, batch_idx in enumerate(tqdm(pred_batch_idx, desc=f"Predicting {split}...", position=2)):
                samples = [vectorized_datasets[split][int(idx)] for idx in batch_idx]
                batch = data_collator(samples)
                pred_ids.extend(batch.pop("input_ids"))
                labels = batch["labels"]

                metrics = pad_shard_unpad(p_eval_step, static_return=True)(state.params, batch.data,
                                                                           min_device_batch=per_device_eval_batch_size)
                pred_metrics.append(metrics)

                # generation
                if training_args.predict_with_generate:
                    generated_ids = pad_shard_unpad(p_final_generate_step)(state.params, batch.data, min_device_batch=per_device_eval_batch_size)
                    pred_generations.extend(
                        jax.device_get(
                            generated_ids.reshape(-1, final_gen_kwargs["num_beams"], final_gen_kwargs["max_length"])
                        )
                    )
                    pred_labels.extend(labels)

            # normalize eval metrics
            pred_metrics = get_metrics(pred_metrics)
            pred_metrics = jax.tree_map(jnp.mean, pred_metrics)
            pred_metrics = to_fp32(pred_metrics)

            # compute error rate metric and get predicted string (for debugging)
            error_rate_desc = ""
            pred_str = []
            label_str = []
            if training_args.predict_with_generate:
                error_rate_metric, pred_str, label_str = compute_metrics(pred_generations, pred_labels)
                pred_metrics.update(error_rate_metric)
                error_rate_desc = " ".join([f"{split} {key}: {value} |" for key, value in error_rate_metric.items()])

            # Print metrics and update progress bar
            desc = f"Step... ({cur_step}/{total_train_steps} | {split} Loss: {pred_metrics['loss']} | {error_rate_desc})"
            epochs.write(desc)
            epochs.desc = desc

            # Save metrics
            write_wandb_log(pred_metrics, cur_step, prefix=split)
            write_wandb_pred(
                pred_str,
                label_str,
                pred_ids,
                cur_step,
                prefix=split,
                top_ids=vectorized_datasets[split]["input_id"] if data_args.log_first_ids else None,
                final_step=True,
            )


if __name__ == "__main__":
    main()