|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch ViT GMML (masked autoencoder) model.""" |
|
|
|
|
|
import collections.abc |
|
import math |
|
from copy import deepcopy |
|
from dataclasses import dataclass |
|
from typing import Optional, Set, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from configuration_gmml import ViTGMMLConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "ViTGMMLConfig" |
|
_CHECKPOINT_FOR_DOC = "erow/vit-gmml-base" |
|
|
|
VIT_GMML_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"erow/vit-gmml-base", |
|
|
|
] |
|
|
|
|
|
@dataclass |
|
class ViTGMMLModelOutput(ModelOutput): |
|
""" |
|
Class for ViTGMMLModel's outputs, with potential hidden states and attentions. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): |
|
Tensor indicating which patches are masked (1) and which are not (0). |
|
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Tensor containing the original index of the (shuffled) masked patches. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer |
|
plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in |
|
the self-attention heads. |
|
""" |
|
|
|
last_hidden_state: torch.FloatTensor = None |
|
noise: torch.LongTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
|
|
@dataclass |
|
class ViTGMMLForPreTrainingOutput(ModelOutput): |
|
""" |
|
Class for ViTGMMLForPreTraining's outputs, with potential hidden states and attentions. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`): |
|
Pixel reconstruction loss. |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size ** 2 * num_channels)`): |
|
Pixel reconstruction logits. |
|
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): |
|
Tensor indicating which patches are masked (1) and which are not (0). |
|
ids_restore (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Tensor containing the original index of the (shuffled) masked patches. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer |
|
plus the initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in |
|
the self-attention heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
noise: torch.LongTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False): |
|
""" |
|
Create 2D sin/cos positional embeddings. |
|
|
|
Args: |
|
embed_dim (`int`): |
|
Embedding dimension. |
|
grid_size (`int`): |
|
The grid height and width. |
|
add_cls_token (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add a classification (CLS) token. |
|
|
|
Returns: |
|
(`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the |
|
position embeddings (with or without classification token) |
|
""" |
|
grid_h = np.arange(grid_size, dtype=np.float32) |
|
grid_w = np.arange(grid_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_size, grid_size]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if add_cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
if embed_dim % 2 != 0: |
|
raise ValueError("embed_dim must be even") |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) |
|
""" |
|
if embed_dim % 2 != 0: |
|
raise ValueError("embed_dim must be even") |
|
|
|
omega = np.arange(embed_dim // 2, dtype=float) |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000**omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum("m,d->md", pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
class ViTGMMLEmbeddings(nn.Module): |
|
""" |
|
Construct the CLS token, position and patch embeddings. |
|
|
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) |
|
self.patch_embeddings = ViTGMMLPatchEmbeddings(config) |
|
self.num_patches = self.patch_embeddings.num_patches |
|
|
|
self.position_embeddings = nn.Parameter( |
|
torch.zeros(1, self.num_patches + 1, config.hidden_size), requires_grad=False |
|
) |
|
self.config = config |
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
pos_embed = get_2d_sincos_pos_embed( |
|
self.position_embeddings.shape[-1], int(self.patch_embeddings.num_patches**0.5), add_cls_token=True |
|
) |
|
self.position_embeddings.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
|
|
w = self.patch_embeddings.projection.weight.data |
|
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
|
|
|
|
torch.nn.init.normal_(self.cls_token, std=self.config.initializer_range) |
|
|
|
|
|
def forward(self, pixel_values, noise=None): |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
embeddings = self.patch_embeddings(pixel_values) |
|
|
|
|
|
embeddings = embeddings + self.position_embeddings[:, 1:, :] |
|
|
|
|
|
cls_token = self.cls_token + self.position_embeddings[:, :1, :] |
|
cls_tokens = cls_token.expand(embeddings.shape[0], -1, -1) |
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1) |
|
|
|
return embeddings |
|
|
|
class ViTGMMLPatchEmbeddings(nn.Module): |
|
""" |
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial |
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a |
|
Transformer. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
image_size, patch_size = config.image_size, config.patch_size |
|
num_channels, hidden_size = config.num_channels, config.hidden_size |
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) |
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) |
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
|
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, pixel_values): |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
) |
|
if height != self.image_size[0] or width != self.image_size[1]: |
|
raise ValueError( |
|
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." |
|
) |
|
x = self.projection(pixel_values).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
|
|
class ViTGMMLSelfAttention(nn.Module): |
|
def __init__(self, config: ViTGMMLConfig) -> None: |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " |
|
f"heads {config.num_attention_heads}." |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
class ViTGMMLSelfOutput(nn.Module): |
|
""" |
|
The residual connection is defined in ViTGMMLLayer instead of here (as is the case with other models), due to the |
|
layernorm applied before each block. |
|
""" |
|
|
|
def __init__(self, config: ViTGMMLConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class ViTGMMLAttention(nn.Module): |
|
def __init__(self, config: ViTGMMLConfig) -> None: |
|
super().__init__() |
|
self.attention = ViTGMMLSelfAttention(config) |
|
self.output = ViTGMMLSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads: Set[int]) -> None: |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.attention.query = prune_linear_layer(self.attention.query, index) |
|
self.attention.key = prune_linear_layer(self.attention.key, index) |
|
self.attention.value = prune_linear_layer(self.attention.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) |
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
self_outputs = self.attention(hidden_states, head_mask, output_attentions) |
|
|
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
|
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
|
|
class ViTGMMLIntermediate(nn.Module): |
|
def __init__(self, config: ViTGMMLConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class ViTGMMLOutput(nn.Module): |
|
def __init__(self, config: ViTGMMLConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
hidden_states = hidden_states + input_tensor |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class ViTGMMLLayer(nn.Module): |
|
"""This corresponds to the Block class in the timm implementation.""" |
|
|
|
def __init__(self, config: ViTGMMLConfig) -> None: |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = ViTGMMLAttention(config) |
|
self.intermediate = ViTGMMLIntermediate(config) |
|
self.output = ViTGMMLOutput(config) |
|
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
self_attention_outputs = self.attention( |
|
self.layernorm_before(hidden_states), |
|
head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
|
|
|
|
hidden_states = attention_output + hidden_states |
|
|
|
|
|
layer_output = self.layernorm_after(hidden_states) |
|
layer_output = self.intermediate(layer_output) |
|
|
|
|
|
layer_output = self.output(layer_output, hidden_states) |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
|
|
class ViTGMMLEncoder(nn.Module): |
|
def __init__(self, config: ViTGMMLConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([ViTGMMLLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[tuple, BaseModelOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
layer_head_mask, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class ViTGMMLPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ViTGMMLConfig |
|
base_model_prefix = "vit" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
VIT_GMML_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it |
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`ViTGMMLConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
VIT_GMML_INPUTS_DOCSTRING = r""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] |
|
for details. |
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare ViTGMML Model transformer outputting raw hidden-states without any specific head on top.", |
|
VIT_GMML_START_DOCSTRING, |
|
) |
|
class ViTGMMLModel(ViTGMMLPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = ViTGMMLEmbeddings(config) |
|
self.encoder = ViTGMMLEncoder(config) |
|
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.patch_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(VIT_GMML_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=ViTGMMLModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
noise: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ViTGMMLModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, ViTGMMLModel |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("erow/vit-gmml-base") |
|
>>> model = ViTGMMLModel.from_pretrained("erow/vit-gmml-base") |
|
|
|
>>> inputs = image_processor(images=image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings(pixel_values, noise=noise) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
|
|
if not return_dict: |
|
return (sequence_output, ) + encoder_outputs[1:] |
|
|
|
return ViTGMMLModelOutput( |
|
last_hidden_state=sequence_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class GMMLDecoder(nn.Module): |
|
def __init__(self, in_dim, in_chans=3, patch_size=16): |
|
super().__init__() |
|
|
|
layers = [nn.Linear(in_dim, in_dim)] |
|
layers.append(nn.GELU()) |
|
layers.append(nn.Linear(in_dim, in_dim)) |
|
layers.append(nn.GELU()) |
|
layers.append(nn.Linear(in_dim, in_dim)) |
|
layers.append(nn.GELU()) |
|
|
|
self.mlp = nn.Sequential(*layers) |
|
self.apply(self._init_weights) |
|
|
|
self.convTrans = nn.ConvTranspose2d(in_dim, in_chans, kernel_size=(patch_size, patch_size), |
|
stride=(patch_size, patch_size)) |
|
|
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
torch.nn.init.normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x): |
|
x = self.mlp(x) |
|
|
|
x_rec = x.transpose(1, 2) |
|
out_sz = tuple( ( int(math.sqrt(x_rec.size()[2])) , int(math.sqrt(x_rec.size()[2])) ) ) |
|
x_rec = self.convTrans(x_rec.unflatten(2, out_sz)) |
|
return x_rec |
|
|
|
|
|
@add_start_docstrings( |
|
"""The ViTGMML Model transformer with the decoder on top for self-supervised pre-training. |
|
|
|
<Tip> |
|
|
|
Note that we provide a script to pre-train this model on custom data in our [examples |
|
directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). |
|
|
|
</Tip> |
|
|
|
""", |
|
VIT_GMML_START_DOCSTRING, |
|
) |
|
class ViTGMMLForPreTraining(ViTGMMLPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.vit = ViTGMMLModel(config) |
|
self.decoder = GMMLDecoder(config.hidden_size, config.num_channels, config.patch_size) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.vit.embeddings.patch_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def patchify(self, pixel_values): |
|
""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. |
|
|
|
Returns: |
|
`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: |
|
Patchified pixel values. |
|
""" |
|
patch_size, num_channels = self.config.patch_size, self.config.num_channels |
|
|
|
if (pixel_values.shape[2] != pixel_values.shape[3]) or (pixel_values.shape[2] % patch_size != 0): |
|
raise ValueError("Make sure the pixel values have a squared size that is divisible by the patch size") |
|
if pixel_values.shape[1] != num_channels: |
|
raise ValueError( |
|
"Make sure the number of channels of the pixel values is equal to the one set in the configuration" |
|
) |
|
|
|
|
|
batch_size = pixel_values.shape[0] |
|
num_patches_one_direction = pixel_values.shape[2] // patch_size |
|
patchified_pixel_values = pixel_values.reshape( |
|
batch_size, num_channels, num_patches_one_direction, patch_size, num_patches_one_direction, patch_size |
|
) |
|
patchified_pixel_values = torch.einsum("nchpwq->nhwpqc", patchified_pixel_values) |
|
patchified_pixel_values = patchified_pixel_values.reshape( |
|
batch_size, num_patches_one_direction * num_patches_one_direction, patch_size**2 * num_channels |
|
) |
|
return patchified_pixel_values |
|
|
|
def unpatchify(self, patchified_pixel_values): |
|
""" |
|
Args: |
|
patchified_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: |
|
Patchified pixel values. |
|
|
|
Returns: |
|
`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`: |
|
Pixel values. |
|
""" |
|
patch_size, num_channels = self.config.patch_size, self.config.num_channels |
|
num_patches_one_direction = int(patchified_pixel_values.shape[1] ** 0.5) |
|
|
|
if num_patches_one_direction**2 != patchified_pixel_values.shape[1]: |
|
raise ValueError("Make sure that the number of patches can be squared") |
|
|
|
|
|
batch_size = patchified_pixel_values.shape[0] |
|
patchified_pixel_values = patchified_pixel_values.reshape( |
|
batch_size, |
|
num_patches_one_direction, |
|
num_patches_one_direction, |
|
patch_size, |
|
patch_size, |
|
num_channels, |
|
) |
|
patchified_pixel_values = torch.einsum("nhwpqc->nchpwq", patchified_pixel_values) |
|
pixel_values = patchified_pixel_values.reshape( |
|
batch_size, |
|
num_channels, |
|
num_patches_one_direction * patch_size, |
|
num_patches_one_direction * patch_size, |
|
) |
|
return pixel_values |
|
|
|
def forward_loss(self, pixel_values, pred, mask): |
|
""" |
|
Args: |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Pixel values. |
|
pred (`torch.FloatTensor` of shape `(batch_size, num_patches, patch_size**2 * num_channels)`: |
|
Predicted pixel values. |
|
mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): |
|
Tensor indicating which patches are masked (1) and which are not (0). |
|
|
|
Returns: |
|
`torch.FloatTensor`: Pixel reconstruction loss. |
|
""" |
|
target = pixel_values |
|
pred = self.unpatchify(pred) |
|
|
|
loss = (pred - target) ** 2 |
|
|
|
loss = (loss * mask).sum() / mask.sum() |
|
return loss |
|
|
|
@add_start_docstrings_to_model_forward(VIT_GMML_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=ViTGMMLForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
noise: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ViTGMMLForPreTrainingOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoImageProcessor, ViTGMMLForPreTraining |
|
>>> from PIL import Image |
|
>>> import requests |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> image_processor = AutoImageProcessor.from_pretrained("erow/vit-gmml-base") |
|
>>> model = ViTGMMLForPreTraining.from_pretrained("erow/vit-gmml-base") |
|
|
|
>>> inputs = image_processor(images=image, return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
>>> loss = outputs.loss |
|
>>> mask = outputs.mask |
|
>>> ids_restore = outputs.ids_restore |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.vit( |
|
pixel_values, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
latent = outputs.last_hidden_state |
|
|
|
logits = self.decoder(latent) |
|
|
|
loss = self.forward_loss(pixel_values, logits, noise) |
|
|
|
if not return_dict: |
|
output = (logits, ) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return ViTGMMLForPreTrainingOutput( |
|
loss=loss, |
|
logits=logits, |
|
noise=noise, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
if __name__=="__main__": |
|
|
|
|
|
configuration = ViTGMMLConfig() |
|
|
|
|
|
model = ViTGMMLModel(configuration) |
|
|
|
|
|
configuration = model.config |
|
|
|
x = torch.randn(1, 3, 224, 224) |
|
output = model(x) |