Initial commit
Browse files- .gitattributes +1 -0
- README.md +66 -0
- args.yml +75 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- ppo-Pendulum-v1.zip +3 -0
- ppo-Pendulum-v1/_stable_baselines3_version +1 -0
- ppo-Pendulum-v1/data +99 -0
- ppo-Pendulum-v1/policy.optimizer.pth +3 -0
- ppo-Pendulum-v1/policy.pth +3 -0
- ppo-Pendulum-v1/pytorch_variables.pth +3 -0
- ppo-Pendulum-v1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -227.99 +/- 144.65
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Pendulum-v1
|
20 |
+
type: Pendulum-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **Pendulum-v1**
|
24 |
+
This is a trained model of a **PPO** agent playing **Pendulum-v1**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env Pendulum-v1 -orga ernestumorga -f logs/
|
41 |
+
python enjoy.py --algo ppo --env Pendulum-v1 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env Pendulum-v1 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env Pendulum-v1 -f logs/ -orga ernestumorga
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('clip_range', 0.2),
|
54 |
+
('ent_coef', 0.0),
|
55 |
+
('gae_lambda', 0.95),
|
56 |
+
('gamma', 0.9),
|
57 |
+
('learning_rate', 0.001),
|
58 |
+
('n_envs', 4),
|
59 |
+
('n_epochs', 10),
|
60 |
+
('n_steps', 1024),
|
61 |
+
('n_timesteps', 100000.0),
|
62 |
+
('policy', 'MlpPolicy'),
|
63 |
+
('sde_sample_freq', 4),
|
64 |
+
('use_sde', True),
|
65 |
+
('normalize', False)])
|
66 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- Pendulum-v1
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 1
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - pruner
|
45 |
+
- median
|
46 |
+
- - sampler
|
47 |
+
- tpe
|
48 |
+
- - save_freq
|
49 |
+
- -1
|
50 |
+
- - save_replay_buffer
|
51 |
+
- false
|
52 |
+
- - seed
|
53 |
+
- 1237341224
|
54 |
+
- - storage
|
55 |
+
- null
|
56 |
+
- - study_name
|
57 |
+
- null
|
58 |
+
- - tensorboard_log
|
59 |
+
- ''
|
60 |
+
- - track
|
61 |
+
- false
|
62 |
+
- - trained_agent
|
63 |
+
- ''
|
64 |
+
- - truncate_last_trajectory
|
65 |
+
- true
|
66 |
+
- - uuid
|
67 |
+
- false
|
68 |
+
- - vec_env
|
69 |
+
- dummy
|
70 |
+
- - verbose
|
71 |
+
- 1
|
72 |
+
- - wandb_entity
|
73 |
+
- null
|
74 |
+
- - wandb_project_name
|
75 |
+
- sb3
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - clip_range
|
3 |
+
- 0.2
|
4 |
+
- - ent_coef
|
5 |
+
- 0.0
|
6 |
+
- - gae_lambda
|
7 |
+
- 0.95
|
8 |
+
- - gamma
|
9 |
+
- 0.9
|
10 |
+
- - learning_rate
|
11 |
+
- 0.001
|
12 |
+
- - n_envs
|
13 |
+
- 4
|
14 |
+
- - n_epochs
|
15 |
+
- 10
|
16 |
+
- - n_steps
|
17 |
+
- 1024
|
18 |
+
- - n_timesteps
|
19 |
+
- 100000.0
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - sde_sample_freq
|
23 |
+
- 4
|
24 |
+
- - use_sde
|
25 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5c6ce02dc14354d0712d08c591dd07d16573761d205e5544ca5008f7f976da3
|
3 |
+
size 139136
|
ppo-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a7
|
ppo-Pendulum-v1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7feca71cc0d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feca71cc160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feca71cc1f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feca71cc280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7feca71cc310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7feca71cc3a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feca71cc430>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7feca71cc4c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feca71cc550>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feca71cc5e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7feca71cc670>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7feca71c72a0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
3
|
29 |
+
],
|
30 |
+
"low": "[-1. -1. -8.]",
|
31 |
+
"high": "[1. 1. 8.]",
|
32 |
+
"bounded_below": "[ True True True]",
|
33 |
+
"bounded_above": "[ True True True]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
1
|
42 |
+
],
|
43 |
+
"low": "[-2.]",
|
44 |
+
"high": "[2.]",
|
45 |
+
"bounded_below": "[ True]",
|
46 |
+
"bounded_above": "[ True]",
|
47 |
+
"_np_random": "RandomState(MT19937)"
|
48 |
+
},
|
49 |
+
"n_envs": 4,
|
50 |
+
"num_timesteps": 102400,
|
51 |
+
"_total_timesteps": 100000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1654610185.237497,
|
56 |
+
"learning_rate": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWV4wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFkvaG9tZS9tL0RvY3VtZW50cy9DSEFJL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
59 |
+
},
|
60 |
+
"tensorboard_log": null,
|
61 |
+
"lr_schedule": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gAWV4wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFkvaG9tZS9tL0RvY3VtZW50cy9DSEFJL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
64 |
+
},
|
65 |
+
"_last_obs": null,
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
69 |
+
},
|
70 |
+
"_last_original_obs": null,
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": true,
|
73 |
+
"sde_sample_freq": 4,
|
74 |
+
"_current_progress_remaining": -0.02400000000000002,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQSrFjgZzccCUhpRSlIwBbJRLyIwBdJRHQFIMEehf0Ep1fZQoaAZoCWgPQwjzx7Q2DbFhwJSGlFKUaBVLyGgWR0BSC9jslb/wdX2UKGgGaAloD0MIE4B/SpXIF8CUhpRSlGgVS8hoFkdAUguxW1c+q3V9lChoBmgJaA9DCKacL/aeDXLAlIaUUpRoFUvIaBZHQFILiTdLxqh1fZQoaAZoCWgPQwhoI9dNKSN4wJSGlFKUaBVLyGgWR0BSGPsu3+dcdX2UKGgGaAloD0MI8WJhiJwdcMCUhpRSlGgVS8hoFkdAUhjCSA6Mi3V9lChoBmgJaA9DCJtY4Cu6VRzAlIaUUpRoFUvIaBZHQFIYmu1WsBB1fZQoaAZoCWgPQwhLlL2lfFiBwJSGlFKUaBVLyGgWR0BSGHK0UoKEdX2UKGgGaAloD0MI04TtJ+ObYMCUhpRSlGgVS8hoFkdAUiZLqUu+RHV9lChoBmgJaA9DCDlhwmjWsmHAlIaUUpRoFUvIaBZHQFImErXlKbt1fZQoaAZoCWgPQwgfgNQmTlZ4wJSGlFKUaBVLyGgWR0BSJeuvECNkdX2UKGgGaAloD0MIM4tQbIVpYMCUhpRSlGgVS8hoFkdAUiXEyckMTnV9lChoBmgJaA9DCAzO4O9XS3DAlIaUUpRoFUvIaBZHQFIzUd7v5QB1fZQoaAZoCWgPQwj2lQfpKShhwJSGlFKUaBVLyGgWR0BSMxjFyaNNdX2UKGgGaAloD0MIopdRLDemc8CUhpRSlGgVS8hoFkdAUjLxMFlkH3V9lChoBmgJaA9DCIdsIF3sCHfAlIaUUpRoFUvIaBZHQFIyyOaOPvN1fZQoaAZoCWgPQwh/UBcplNVgwJSGlFKUaBVLyGgWR0BS0MrNGEwndX2UKGgGaAloD0MIgV64c2FEDcCUhpRSlGgVS8hoFkdAUtCSEDhcaHV9lChoBmgJaA9DCGfTEcDNPmHAlIaUUpRoFUvIaBZHQFLQarFOwgV1fZQoaAZoCWgPQwjjNa/qrAxwwJSGlFKUaBVLyGgWR0BS0EKJEYwZdX2UKGgGaAloD0MIL1G9NVBxgMCUhpRSlGgVS8hoFkdAUt5+NLlFMXV9lChoBmgJaA9DCJYEqKnl3XDAlIaUUpRoFUvIaBZHQFLeRPXTVlR1fZQoaAZoCWgPQwg3N6Yn7HlwwJSGlFKUaBVLyGgWR0BS3h1xKg7HdX2UKGgGaAloD0MIc9pTcs6JcMCUhpRSlGgVS8hoFkdAUt324/eLvXV9lChoBmgJaA9DCAWLw5nfI3HAlIaUUpRoFUvIaBZHQFLryCFsYVJ1fZQoaAZoCWgPQwhwXMZNzThxwJSGlFKUaBVLyGgWR0BS649kjHGTdX2UKGgGaAloD0MImE2AYfncYMCUhpRSlGgVS8hoFkdAUutn3+MqBnV9lChoBmgJaA9DCEYIjzYOV3nAlIaUUpRoFUvIaBZHQFLrP69CeEt1fZQoaAZoCWgPQwi5p6s7FsNwwJSGlFKUaBVLyGgWR0BS+RRMvh60dX2UKGgGaAloD0MIr5l8s80NEMCUhpRSlGgVS8hoFkdAUvjbpNbkfnV9lChoBmgJaA9DCOHurN12GGHAlIaUUpRoFUvIaBZHQFL4tBOYYzl1fZQoaAZoCWgPQwgt6/6xkKqAwJSGlFKUaBVLyGgWR0BS+IwmE5AAdX2UKGgGaAloD0MI+mNam0bcYMCUhpRSlGgVS8hoFkdAUwaRRuTA33V9lChoBmgJaA9DCGMmUS84c3DAlIaUUpRoFUvIaBZHQFMGWBjFyaN1fZQoaAZoCWgPQwjJ5qp5TvhwwJSGlFKUaBVLyGgWR0BTBjByjpLVdX2UKGgGaAloD0MICB9KtOTwYMCUhpRSlGgVS8hoFkdAUwYIIF/x2HV9lChoBmgJaA9DCDboS29/k2DAlIaUUpRoFUvIaBZHQFOfiOvMbFV1fZQoaAZoCWgPQwjWpxyTxe9gwJSGlFKUaBVLyGgWR0BTn1Bt1p0wdX2UKGgGaAloD0MIjGmme510BsCUhpRSlGgVS8hoFkdAU58o+fRNRHV9lChoBmgJaA9DCE7U0twKoQjAlIaUUpRoFUvIaBZHQFOfANoakyl1fZQoaAZoCWgPQwiMg0vHnJRgwJSGlFKUaBVLyGgWR0BTrHWWhRIjdX2UKGgGaAloD0MIlWOyuH/QeMCUhpRSlGgVS8hoFkdAU6w8ZDRc/3V9lChoBmgJaA9DCF0VqMWgCHnAlIaUUpRoFUvIaBZHQFOsFPi1iON1fZQoaAZoCWgPQwhFveDTXNlxwJSGlFKUaBVLyGgWR0BTq+yiVSn+dX2UKGgGaAloD0MIteBFX4FveMCUhpRSlGgVS8hoFkdAU7lnVXmvGXV9lChoBmgJaA9DCMMpc/ONiHDAlIaUUpRoFUvIaBZHQFO5LhJiAlR1fZQoaAZoCWgPQwiQ2O4eoEJgwJSGlFKUaBVLyGgWR0BTuQaR6nivdX2UKGgGaAloD0MIF9f4TPYPb8CUhpRSlGgVS8hoFkdAU7jeenQ6ZHV9lChoBmgJaA9DCEMc6+I2jWHAlIaUUpRoFUvIaBZHQFPHF4s3AEd1fZQoaAZoCWgPQwg01ZP5R8RgwJSGlFKUaBVLyGgWR0BTxt6cAimmdX2UKGgGaAloD0MIIbByaFEHdcCUhpRSlGgVS8hoFkdAU8a2/i5uqHV9lChoBmgJaA9DCDhOCvOermDAlIaUUpRoFUvIaBZHQFPGjslb/wR1fZQoaAZoCWgPQwiAKm7cYjJgwJSGlFKUaBVLyGgWR0BT1ETcqOLjdX2UKGgGaAloD0MIswqbAS61b8CUhpRSlGgVS8hoFkdAU9QMRYigTXV9lChoBmgJaA9DCPEvgsbMPG/AlIaUUpRoFUvIaBZHQFPT5VOsT391fZQoaAZoCWgPQwjqCOBmsRt3wJSGlFKUaBVLyGgWR0BT07127nPndX2UKGgGaAloD0MI+vGXFvU/YMCUhpRSlGgVS8hoFkdAVIMKgIyCWnV9lChoBmgJaA9DCJ+QnbexrV7AlIaUUpRoFUvIaBZHQFSC1BMSK3x1fZQoaAZoCWgPQwgzqaENQIdhwJSGlFKUaBVLyGgWR0BUgq0Y0l7ddX2UKGgGaAloD0MITdh+MkZzcMCUhpRSlGgVS8hoFkdAVIKFN+LFXXV9lChoBmgJaA9DCNfCLLRzmva/lIaUUpRoFUvIaBZHQFSSdBBzFMt1fZQoaAZoCWgPQwidgCbCRid2wJSGlFKUaBVLyGgWR0BUkjwH7gsLdX2UKGgGaAloD0MI1e3sK4/tcMCUhpRSlGgVS8hoFkdAVJIU0vXbunV9lChoBmgJaA9DCEZ55uWwE2HAlIaUUpRoFUvIaBZHQFSR7NSqEOB1fZQoaAZoCWgPQwi3JXLBGXwIwJSGlFKUaBVLyGgWR0BUompIczZZdX2UKGgGaAloD0MIEaYol0aRYMCUhpRSlGgVS8hoFkdAVKIyHmA9V3V9lChoBmgJaA9DCCwN/KiG8m7AlIaUUpRoFUvIaBZHQFSiCyhSLqF1fZQoaAZoCWgPQwirs1pgjxVfwJSGlFKUaBVLyGgWR0BUoeM+/xlQdX2UKGgGaAloD0MIUU1J1mH7YMCUhpRSlGgVS8hoFkdAVLG8BdUsF3V9lChoBmgJaA9DCN/DJccdqHDAlIaUUpRoFUvIaBZHQFSxg4Otnwp1fZQoaAZoCWgPQwhH6dK/5FxwwJSGlFKUaBVLyGgWR0BUsVy3kPtldX2UKGgGaAloD0MIZw+0AsO1YMCUhpRSlGgVS8hoFkdAVLE0waisXHV9lChoBmgJaA9DCPkx5q5l/HLAlIaUUpRoFUvIaBZHQFTA+lCTlkp1fZQoaAZoCWgPQwhVhJuMapNwwJSGlFKUaBVLyGgWR0BUwMG1QZXNdX2UKGgGaAloD0MIDFuzlRcPccCUhpRSlGgVS8hoFkdAVMCac7Qsw3V9lChoBmgJaA9DCDKtTWN7E3HAlIaUUpRoFUvIaBZHQFTAcnE2pAF1fZQoaAZoCWgPQwhqFJLMqgRxwJSGlFKUaBVLyGgWR0BVnPjOs1badX2UKGgGaAloD0MIBP7w89+vYMCUhpRSlGgVS8hoFkdAVZzBvaURnXV9lChoBmgJaA9DCA+1bRiFzmDAlIaUUpRoFUvIaBZHQFWcm5lOGj91fZQoaAZoCWgPQwiOWmH63kx5wJSGlFKUaBVLyGgWR0BVnHTiKiwjdX2UKGgGaAloD0MI1lOrry5IYMCUhpRSlGgVS8hoFkdAVgHSJCSid3V9lChoBmgJaA9DCENznUZa1mDAlIaUUpRoFUvIaBZHQFYCcNpdrwh1fZQoaAZoCWgPQwjulA7Wf0tuwJSGlFKUaBVLyGgWR0BWAk1hsqJ/dX2UKGgGaAloD0MI3zZTIR6pCMCUhpRSlGgVS8hoFkdAVgIpXp4bCXV9lChoBmgJaA9DCI1donprVXbAlIaUUpRoFUvIaBZHQFY0W7e2uxN1fZQoaAZoCWgPQwifru5YLKx4wJSGlFKUaBVLyGgWR0BWNCZrpJPJdX2UKGgGaAloD0MI6nsNwXHBX8CUhpRSlGgVS8hoFkdAVjQBsANoanV9lChoBmgJaA9DCA01CknmaWHAlIaUUpRoFUvIaBZHQFYz238XN1R1fZQoaAZoCWgPQwiUg9kEWFZ3wJSGlFKUaBVLyGgWR0BWgSzollbvdX2UKGgGaAloD0MI9IsS9BfRYMCUhpRSlGgVS8hoFkdAVoD08NhE0HV9lChoBmgJaA9DCO1ESUhki3bAlIaUUpRoFUvIaBZHQFaAzeXRgJF1fZQoaAZoCWgPQwgaa39ne4xgwJSGlFKUaBVLyGgWR0BWgKYJE6T4dX2UKGgGaAloD0MIUtUEUfeBAMCUhpRSlGgVS8hoFkdAVpC3Sa3I/HV9lChoBmgJaA9DCGb1DrfDwGDAlIaUUpRoFUvIaBZHQFaQf/WDpTx1fZQoaAZoCWgPQwgwE0VI3VFgwJSGlFKUaBVLyGgWR0BWkFpTMqz7dX2UKGgGaAloD0MISrclcsE/cMCUhpRSlGgVS8hoFkdAVpAy44Ia+HV9lChoBmgJaA9DCAlOfSC5UnDAlIaUUpRoFUvIaBZHQFaggezUqhF1fZQoaAZoCWgPQwiCj8GKUxxfwJSGlFKUaBVLyGgWR0BWoErwvxpddX2UKGgGaAloD0MIi2zn+6nRC8CUhpRSlGgVS8hoFkdAVqAkE9t/F3V9lChoBmgJaA9DCLVRnQ7kU2DAlIaUUpRoFUvIaBZHQFaf/CZWq951ZS4="
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 250,
|
84 |
+
"n_steps": 1024,
|
85 |
+
"gamma": 0.9,
|
86 |
+
"gae_lambda": 0.95,
|
87 |
+
"ent_coef": 0.0,
|
88 |
+
"vf_coef": 0.5,
|
89 |
+
"max_grad_norm": 0.5,
|
90 |
+
"batch_size": 64,
|
91 |
+
"n_epochs": 10,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWV4wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFkvaG9tZS9tL0RvY3VtZW50cy9DSEFJL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWS9ob21lL20vRG9jdW1lbnRzL0NIQUkvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null
|
99 |
+
}
|
ppo-Pendulum-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dbf108a66febbfcfaca2939a22d5be9b2904856fa54c999df0dcf687357bddb
|
3 |
+
size 78871
|
ppo-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f518a9755bc8822dcf657fe014e2d1d7ca1ab69889ffc871650b98b9e189a449
|
3 |
+
size 40254
|
ppo-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-109-generic-x86_64-with-glibc2.29 #123-Ubuntu SMP Fri Apr 8 09:10:54 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.5.1a7
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd6aba8777fe10bc86e6e1415cc66ff6417d15a19d866bbe218ede118e568965
|
3 |
+
size 143419
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -227.99178550000002, "std_reward": 144.64611247723332, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-07T16:05:58.437311"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efb5d0840d51a264fd8d7c3e6163223fe8fca9feefc0da60c70d0c246961fb5e
|
3 |
+
size 15601
|