ernestum commited on
Commit
3e61920
·
1 Parent(s): 15cae7f

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/CartPole-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: seals/CartPole-v0
16
+ type: seals/CartPole-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 500.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **seals/CartPole-v0**
25
+ This is a trained model of a **PPO** agent playing **seals/CartPole-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga ernestum -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env seals/CartPole-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga ernestum -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env seals/CartPole-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env seals/CartPole-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env seals/CartPole-v0 -f logs/ -orga ernestum
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('clip_range', 0.4),
67
+ ('ent_coef', 0.008508727919228772),
68
+ ('gae_lambda', 0.9),
69
+ ('gamma', 0.9999),
70
+ ('learning_rate', 0.0012403278189645594),
71
+ ('max_grad_norm', 0.8),
72
+ ('n_envs', 8),
73
+ ('n_epochs', 10),
74
+ ('n_steps', 512),
75
+ ('n_timesteps', 100000.0),
76
+ ('policy', 'MlpPolicy'),
77
+ ('policy_kwargs',
78
+ {'activation_fn': <class 'torch.nn.modules.activation.ReLU'>,
79
+ 'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
80
+ ('vf_coef', 0.489343896591493),
81
+ ('normalize', False)])
82
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - hyperparams/python/ppo.py
6
+ - - device
7
+ - cpu
8
+ - - env
9
+ - seals/CartPole-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 0
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - - seals
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - gymnasium_models
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - 4
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 705888933
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - clip_range
5
+ - 0.4
6
+ - - ent_coef
7
+ - 0.008508727919228772
8
+ - - gae_lambda
9
+ - 0.9
10
+ - - gamma
11
+ - 0.9999
12
+ - - learning_rate
13
+ - 0.0012403278189645594
14
+ - - max_grad_norm
15
+ - 0.8
16
+ - - n_envs
17
+ - 8
18
+ - - n_epochs
19
+ - 10
20
+ - - n_steps
21
+ - 512
22
+ - - n_timesteps
23
+ - 100000.0
24
+ - - policy
25
+ - MlpPolicy
26
+ - - policy_kwargs
27
+ - activation_fn: !!python/name:torch.nn.modules.activation.ReLU ''
28
+ net_arch:
29
+ - pi:
30
+ - 64
31
+ - 64
32
+ vf:
33
+ - 64
34
+ - 64
35
+ - - vf_coef
36
+ - 0.489343896591493
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-seals-CartPole-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6289bb697fc0f1e7637e587652d2d776145618358af91920d8992712a943879a
3
+ size 139001
ppo-seals-CartPole-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
ppo-seals-CartPole-v0/data ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc203108040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc2031080d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc203108160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc2031081f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc203108280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc203108310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc2031083a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc203108430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc2031084c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc203108550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc2031085e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc203108670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fc2030e5a80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVZQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKEtAS0BljAJ2ZpRdlChLQEtAZXV1Lg==",
26
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
27
+ "net_arch": {
28
+ "pi": [
29
+ 64,
30
+ 64
31
+ ],
32
+ "vf": [
33
+ 64,
34
+ 64
35
+ ]
36
+ }
37
+ },
38
+ "num_timesteps": 102400,
39
+ "_total_timesteps": 100000,
40
+ "_num_timesteps_at_start": 0,
41
+ "seed": 0,
42
+ "action_noise": null,
43
+ "start_time": 1694771152136710495,
44
+ "learning_rate": {
45
+ ":type:": "<class 'function'>",
46
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1RST9rNKDOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
47
+ },
48
+ "tensorboard_log": null,
49
+ "_last_obs": null,
50
+ "_last_episode_starts": {
51
+ ":type:": "<class 'numpy.ndarray'>",
52
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
53
+ },
54
+ "_last_original_obs": null,
55
+ "_episode_num": 0,
56
+ "use_sde": false,
57
+ "sde_sample_freq": -1,
58
+ "_current_progress_remaining": -0.02400000000000002,
59
+ "_stats_window_size": 100,
60
+ "ep_info_buffer": {
61
+ ":type:": "<class 'collections.deque'>",
62
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAKPgtFrl/6XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCj3yup0fYB1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ao92h7E5yVdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKPcEmplz2nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpPgNwzch11fZQoaAZHQH9AAAAAAABoB030AWgIR0AqTxOtW+49dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKk6vA44p+nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpOSZBsyi51fZQoaAZHQH9AAAAAAABoB030AWgIR0AqTd+ocaOxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKk19v0h/zHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpNGy5Zr591fZQoaAZHQH9AAAAAAABoB030AWgIR0AqTLdvbXYldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK6eYMOPNmnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCunPC2tuDV1fZQoaAZHQH9AAAAAAABoB030AWgIR0ArptjTa0x/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK6Z0bLlmvnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCumC04R28t1fZQoaAZHQH9AAAAAAABoB030AWgIR0ArpaouPFNtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK6VIiC8OC3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCuk5fdAPd51fZQoaAZHQH9AAAAAAABoB030AWgIR0As/5HmRvFWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALP8iwB5ooXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCz+wmmce8x1fZQoaAZHQH9AAAAAAABoB030AWgIR0As/l2eQMhHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALP3zlLeyiXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCz9kWhysCF1fZQoaAZHQH9AAAAAAABoB030AWgIR0As/S88La24dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALPzLW7OE/XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5VVNpM6BB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuVOgxrSE2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALlSDh99c8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5UHlfZ26l1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuU7Rv3rUtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALlNSZSeiBXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5S7/XGwRp1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuUox59mYjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAL6s2FWXC0nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC+qxs2vStx1fZQoaAZHQH9AAAAAAABoB030AWgIR0AvqmG/N7jUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAL6n8KohpxnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC+pkf9xZMd1fZQoaAZHQH9AAAAAAABoB030AWgIR0AvqTAWSEDhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAL6jNyHVPN3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC+oam4y44J1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwgK9PDYRNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMIB2B8QZoHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDCAQ4CIUJx1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwgBClabF1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMH/boKUmlnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDB/qoqCpWF1fZQoaAZHQH9AAAAAAABoB030AWgIR0Awf3lS0jTsdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMH9Hc1wYL3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDEro7muDBd1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxK2vjfek6dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMSs5sCT2WnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDErBwdbPhR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxKtITXarWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMSqhQFcIJXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDEqcCo0hvB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxKj5sTFl1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMdd3W4EwFnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDHXQAuIyj51fZQoaAZHQH9AAAAAAABoB030AWgIR0Ax1w2ETQE7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMdbayrxRVXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDHWpaRp1zR1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ax1nSv1UVBdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMdZDeCTUzHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDHWEZiuuA91fZQoaAZHQH9AAAAAAABoB030AWgIR0AyglwcYIjXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMoImLLpzLnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDKB9Dx9XtB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AygcGC7K7qdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMoGMju8brHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDKBW7voePt1fZQoaAZHQH9AAAAAAABoB030AWgIR0AygSqEOAiFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMoD5CWu5jHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDMumTC+De11fZQoaAZHQH9AAAAAAABoB030AWgIR0AzLmYjSofkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMy40VJtix3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDMuAc1fmcR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AzLc3l0YCRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMy2dVea8YnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDMtbHIZIhB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AzLTrVvuPWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM9lVDKHO8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDPZHz6JqIt1fZQoaAZHQH9AAAAAAABoB030AWgIR0Az2Oz6ab4KdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM9i6QNkOJHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDPYhTwUg0V1fZQoaAZHQH9AAAAAAABoB030AWgIR0Az2FRYRujzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM9gjUutfX3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDPX8XN1QqJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0A0g0xM36yjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANIMVHnU2DXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDSC4qgAZKp1fZQoaAZHQH9AAAAAAABoB030AWgIR0A0gq/ub7TEdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANIJ6+nIhhnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDSCSr5qM3t1fZQoaAZHQH9AAAAAAABoB030AWgIR0A0ghl18stkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANIHnuAqd6XVlLg=="
63
+ },
64
+ "ep_success_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
67
+ },
68
+ "_n_updates": 250,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
71
+ ":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAP//f////3//2w9JwP//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAP//f3///39/2w9JQP//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstMy40MDI4MjM1ZSszOCAtMy40MDI4MjM1ZSszOCAtMy4xNDE1OTI3ZSswMCAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbMy40MDI4MjM1ZSszOCAzLjQwMjgyMzVlKzM4IDMuMTQxNTkyN2UrMDAgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
72
+ "dtype": "float32",
73
+ "bounded_below": "[ True True True True]",
74
+ "bounded_above": "[ True True True True]",
75
+ "_shape": [
76
+ 4
77
+ ],
78
+ "low": "[-3.4028235e+38 -3.4028235e+38 -3.1415927e+00 -3.4028235e+38]",
79
+ "high": "[3.4028235e+38 3.4028235e+38 3.1415927e+00 3.4028235e+38]",
80
+ "low_repr": "[-3.4028235e+38 -3.4028235e+38 -3.1415927e+00 -3.4028235e+38]",
81
+ "high_repr": "[3.4028235e+38 3.4028235e+38 3.1415927e+00 3.4028235e+38]",
82
+ "_np_random": null
83
+ },
84
+ "action_space": {
85
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
86
+ ":serialized:": "gAWVugEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB6MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCmKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
87
+ "n": "2",
88
+ "start": "0",
89
+ "_shape": [],
90
+ "dtype": "int64",
91
+ "_np_random": "Generator(PCG64)"
92
+ },
93
+ "n_envs": 1,
94
+ "n_steps": 512,
95
+ "gamma": 0.9999,
96
+ "gae_lambda": 0.9,
97
+ "ent_coef": 0.008508727919228772,
98
+ "vf_coef": 0.489343896591493,
99
+ "max_grad_norm": 0.8,
100
+ "batch_size": 256,
101
+ "n_epochs": 10,
102
+ "clip_range": {
103
+ ":type:": "<class 'function'>",
104
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
105
+ },
106
+ "clip_range_vf": null,
107
+ "normalize_advantage": true,
108
+ "target_kl": null,
109
+ "lr_schedule": {
110
+ ":type:": "<class 'function'>",
111
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1RST9rNKDOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
112
+ }
113
+ }
ppo-seals-CartPole-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40da409386ebbb12b110342c54781f79f6bb75a7011b5c77349fc23803476222
3
+ size 82425
ppo-seals-CartPole-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6db5d09a0139e686bcea8d28033d45282a219872cdf9615bd34f323321953549
3
+ size 40641
ppo-seals-CartPole-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-seals-CartPole-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T13:56:17.720409"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:761f4110060ae02a1ee41e137ab087b607b678b3485f113639424090116ef535
3
+ size 6345