Initial commit
Browse files- .gitattributes +1 -0
- README.md +82 -0
- args.yml +81 -0
- config.yml +36 -0
- env_kwargs.yml +1 -0
- ppo-seals-CartPole-v0.zip +3 -0
- ppo-seals-CartPole-v0/_stable_baselines3_version +1 -0
- ppo-seals-CartPole-v0/data +113 -0
- ppo-seals-CartPole-v0/policy.optimizer.pth +3 -0
- ppo-seals-CartPole-v0/policy.pth +3 -0
- ppo-seals-CartPole-v0/pytorch_variables.pth +3 -0
- ppo-seals-CartPole-v0/system_info.txt +9 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- seals/CartPole-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: seals/CartPole-v0
|
16 |
+
type: seals/CartPole-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 500.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **seals/CartPole-v0**
|
25 |
+
This is a trained model of a **PPO** agent playing **seals/CartPole-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga ernestum -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env seals/CartPole-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env seals/CartPole-v0 -orga ernestum -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env seals/CartPole-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env seals/CartPole-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env seals/CartPole-v0 -f logs/ -orga ernestum
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 256),
|
66 |
+
('clip_range', 0.4),
|
67 |
+
('ent_coef', 0.008508727919228772),
|
68 |
+
('gae_lambda', 0.9),
|
69 |
+
('gamma', 0.9999),
|
70 |
+
('learning_rate', 0.0012403278189645594),
|
71 |
+
('max_grad_norm', 0.8),
|
72 |
+
('n_envs', 8),
|
73 |
+
('n_epochs', 10),
|
74 |
+
('n_steps', 512),
|
75 |
+
('n_timesteps', 100000.0),
|
76 |
+
('policy', 'MlpPolicy'),
|
77 |
+
('policy_kwargs',
|
78 |
+
{'activation_fn': <class 'torch.nn.modules.activation.ReLU'>,
|
79 |
+
'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
|
80 |
+
('vf_coef', 0.489343896591493),
|
81 |
+
('normalize', False)])
|
82 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - conf_file
|
5 |
+
- hyperparams/python/ppo.py
|
6 |
+
- - device
|
7 |
+
- cpu
|
8 |
+
- - env
|
9 |
+
- seals/CartPole-v0
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 0
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- - seals
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- gymnasium_models
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- 4
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 705888933
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- ''
|
64 |
+
- - track
|
65 |
+
- false
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - clip_range
|
5 |
+
- 0.4
|
6 |
+
- - ent_coef
|
7 |
+
- 0.008508727919228772
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.9
|
10 |
+
- - gamma
|
11 |
+
- 0.9999
|
12 |
+
- - learning_rate
|
13 |
+
- 0.0012403278189645594
|
14 |
+
- - max_grad_norm
|
15 |
+
- 0.8
|
16 |
+
- - n_envs
|
17 |
+
- 8
|
18 |
+
- - n_epochs
|
19 |
+
- 10
|
20 |
+
- - n_steps
|
21 |
+
- 512
|
22 |
+
- - n_timesteps
|
23 |
+
- 100000.0
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
26 |
+
- - policy_kwargs
|
27 |
+
- activation_fn: !!python/name:torch.nn.modules.activation.ReLU ''
|
28 |
+
net_arch:
|
29 |
+
- pi:
|
30 |
+
- 64
|
31 |
+
- 64
|
32 |
+
vf:
|
33 |
+
- 64
|
34 |
+
- 64
|
35 |
+
- - vf_coef
|
36 |
+
- 0.489343896591493
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-seals-CartPole-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6289bb697fc0f1e7637e587652d2d776145618358af91920d8992712a943879a
|
3 |
+
size 139001
|
ppo-seals-CartPole-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
ppo-seals-CartPole-v0/data
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc203108040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc2031080d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc203108160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc2031081f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc203108280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc203108310>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc2031083a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc203108430>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc2031084c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc203108550>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc2031085e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc203108670>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fc2030e5a80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVZQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKEtAS0BljAJ2ZpRdlChLQEtAZXV1Lg==",
|
26 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
27 |
+
"net_arch": {
|
28 |
+
"pi": [
|
29 |
+
64,
|
30 |
+
64
|
31 |
+
],
|
32 |
+
"vf": [
|
33 |
+
64,
|
34 |
+
64
|
35 |
+
]
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"num_timesteps": 102400,
|
39 |
+
"_total_timesteps": 100000,
|
40 |
+
"_num_timesteps_at_start": 0,
|
41 |
+
"seed": 0,
|
42 |
+
"action_noise": null,
|
43 |
+
"start_time": 1694771152136710495,
|
44 |
+
"learning_rate": {
|
45 |
+
":type:": "<class 'function'>",
|
46 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1RST9rNKDOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
47 |
+
},
|
48 |
+
"tensorboard_log": null,
|
49 |
+
"_last_obs": null,
|
50 |
+
"_last_episode_starts": {
|
51 |
+
":type:": "<class 'numpy.ndarray'>",
|
52 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
53 |
+
},
|
54 |
+
"_last_original_obs": null,
|
55 |
+
"_episode_num": 0,
|
56 |
+
"use_sde": false,
|
57 |
+
"sde_sample_freq": -1,
|
58 |
+
"_current_progress_remaining": -0.02400000000000002,
|
59 |
+
"_stats_window_size": 100,
|
60 |
+
"ep_info_buffer": {
|
61 |
+
":type:": "<class 'collections.deque'>",
|
62 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAKPgtFrl/6XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCj3yup0fYB1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ao92h7E5yVdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKPcEmplz2nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpPgNwzch11fZQoaAZHQH9AAAAAAABoB030AWgIR0AqTxOtW+49dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKk6vA44p+nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpOSZBsyi51fZQoaAZHQH9AAAAAAABoB030AWgIR0AqTd+ocaOxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAKk19v0h/zHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCpNGy5Zr591fZQoaAZHQH9AAAAAAABoB030AWgIR0AqTLdvbXYldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK6eYMOPNmnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCunPC2tuDV1fZQoaAZHQH9AAAAAAABoB030AWgIR0ArptjTa0x/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK6Z0bLlmvnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCumC04R28t1fZQoaAZHQH9AAAAAAABoB030AWgIR0ArpaouPFNtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAK6VIiC8OC3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCuk5fdAPd51fZQoaAZHQH9AAAAAAABoB030AWgIR0As/5HmRvFWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALP8iwB5ooXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCz+wmmce8x1fZQoaAZHQH9AAAAAAABoB030AWgIR0As/l2eQMhHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALP3zlLeyiXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQCz9kWhysCF1fZQoaAZHQH9AAAAAAABoB030AWgIR0As/S88La24dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALPzLW7OE/XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5VVNpM6BB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuVOgxrSE2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALlSDh99c8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5UHlfZ26l1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuU7Rv3rUtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdALlNSZSeiBXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC5S7/XGwRp1fZQoaAZHQH9AAAAAAABoB030AWgIR0AuUox59mYjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAL6s2FWXC0nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC+qxs2vStx1fZQoaAZHQH9AAAAAAABoB030AWgIR0AvqmG/N7jUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAL6n8KohpxnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC+pkf9xZMd1fZQoaAZHQH9AAAAAAABoB030AWgIR0AvqTAWSEDhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAL6jNyHVPN3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQC+oam4y44J1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwgK9PDYRNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMIB2B8QZoHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDCAQ4CIUJx1fZQoaAZHQH9AAAAAAABoB030AWgIR0AwgBClabF1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMH/boKUmlnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDB/qoqCpWF1fZQoaAZHQH9AAAAAAABoB030AWgIR0Awf3lS0jTsdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMH9Hc1wYL3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDEro7muDBd1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxK2vjfek6dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMSs5sCT2WnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDErBwdbPhR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxKtITXarWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMSqhQFcIJXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDEqcCo0hvB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AxKj5sTFl1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMdd3W4EwFnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDHXQAuIyj51fZQoaAZHQH9AAAAAAABoB030AWgIR0Ax1w2ETQE7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMdbayrxRVXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDHWpaRp1zR1fZQoaAZHQH9AAAAAAABoB030AWgIR0Ax1nSv1UVBdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMdZDeCTUzHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDHWEZiuuA91fZQoaAZHQH9AAAAAAABoB030AWgIR0AyglwcYIjXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMoImLLpzLnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDKB9Dx9XtB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AygcGC7K7qdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMoGMju8brHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDKBW7voePt1fZQoaAZHQH9AAAAAAABoB030AWgIR0AygSqEOAiFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMoD5CWu5jHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDMumTC+De11fZQoaAZHQH9AAAAAAABoB030AWgIR0AzLmYjSofkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMy40VJtix3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDMuAc1fmcR1fZQoaAZHQH9AAAAAAABoB030AWgIR0AzLc3l0YCRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAMy2dVea8YnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDMtbHIZIhB1fZQoaAZHQH9AAAAAAABoB030AWgIR0AzLTrVvuPWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM9lVDKHO8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDPZHz6JqIt1fZQoaAZHQH9AAAAAAABoB030AWgIR0Az2Oz6ab4KdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM9i6QNkOJHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDPYhTwUg0V1fZQoaAZHQH9AAAAAAABoB030AWgIR0Az2FRYRujzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAM9gjUutfX3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDPX8XN1QqJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0A0g0xM36yjdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANIMVHnU2DXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDSC4qgAZKp1fZQoaAZHQH9AAAAAAABoB030AWgIR0A0gq/ub7TEdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANIJ6+nIhhnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDSCSr5qM3t1fZQoaAZHQH9AAAAAAABoB030AWgIR0A0ghl18stkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANIHnuAqd6XVlLg=="
|
63 |
+
},
|
64 |
+
"ep_success_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
67 |
+
},
|
68 |
+
"_n_updates": 250,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
71 |
+
":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAP//f////3//2w9JwP//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAP//f3///39/2w9JQP//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstMy40MDI4MjM1ZSszOCAtMy40MDI4MjM1ZSszOCAtMy4xNDE1OTI3ZSswMCAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbMy40MDI4MjM1ZSszOCAzLjQwMjgyMzVlKzM4IDMuMTQxNTkyN2UrMDAgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
72 |
+
"dtype": "float32",
|
73 |
+
"bounded_below": "[ True True True True]",
|
74 |
+
"bounded_above": "[ True True True True]",
|
75 |
+
"_shape": [
|
76 |
+
4
|
77 |
+
],
|
78 |
+
"low": "[-3.4028235e+38 -3.4028235e+38 -3.1415927e+00 -3.4028235e+38]",
|
79 |
+
"high": "[3.4028235e+38 3.4028235e+38 3.1415927e+00 3.4028235e+38]",
|
80 |
+
"low_repr": "[-3.4028235e+38 -3.4028235e+38 -3.1415927e+00 -3.4028235e+38]",
|
81 |
+
"high_repr": "[3.4028235e+38 3.4028235e+38 3.1415927e+00 3.4028235e+38]",
|
82 |
+
"_np_random": null
|
83 |
+
},
|
84 |
+
"action_space": {
|
85 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
86 |
+
":serialized:": "gAWVugEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB6MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCmKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
87 |
+
"n": "2",
|
88 |
+
"start": "0",
|
89 |
+
"_shape": [],
|
90 |
+
"dtype": "int64",
|
91 |
+
"_np_random": "Generator(PCG64)"
|
92 |
+
},
|
93 |
+
"n_envs": 1,
|
94 |
+
"n_steps": 512,
|
95 |
+
"gamma": 0.9999,
|
96 |
+
"gae_lambda": 0.9,
|
97 |
+
"ent_coef": 0.008508727919228772,
|
98 |
+
"vf_coef": 0.489343896591493,
|
99 |
+
"max_grad_norm": 0.8,
|
100 |
+
"batch_size": 256,
|
101 |
+
"n_epochs": 10,
|
102 |
+
"clip_range": {
|
103 |
+
":type:": "<class 'function'>",
|
104 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
105 |
+
},
|
106 |
+
"clip_range_vf": null,
|
107 |
+
"normalize_advantage": true,
|
108 |
+
"target_kl": null,
|
109 |
+
"lr_schedule": {
|
110 |
+
":type:": "<class 'function'>",
|
111 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1RST9rNKDOFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
112 |
+
}
|
113 |
+
}
|
ppo-seals-CartPole-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40da409386ebbb12b110342c54781f79f6bb75a7011b5c77349fc23803476222
|
3 |
+
size 82425
|
ppo-seals-CartPole-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6db5d09a0139e686bcea8d28033d45282a219872cdf9615bd34f323321953549
|
3 |
+
size 40641
|
ppo-seals-CartPole-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-seals-CartPole-v0/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.21.0
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T13:56:17.720409"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:761f4110060ae02a1ee41e137ab087b607b678b3485f113639424090116ef535
|
3 |
+
size 6345
|