File size: 1,899 Bytes
cb1844d a23b323 cb1844d a23b323 cb1844d a23b323 cb1844d be5ea5d cb1844d be5ea5d cb1844d be5ea5d cb1844d be5ea5d cb1844d be5ea5d cb1844d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- sft
base_model: HuggingFaceH4/zephyr-7b-beta
datasets:
- erbacher/rag-and-roll
model-index:
- name: zephyr-rag-agent
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-rag-agent
This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on the erbacher/rag-and-roll dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1829
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1559 | 0.99 | 27 | 1.1650 |
| 1.0887 | 1.98 | 54 | 1.1555 |
| 1.0566 | 2.97 | 81 | 1.1623 |
| 1.0264 | 6.95 | 91 | 1.1689 |
| 0.9977 | 7.97 | 105 | 1.1779 |
| 0.9808 | 9.0 | 119 | 1.1820 |
| 0.9791 | 9.8 | 130 | 1.1829 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.2.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2 |