First Commit
Browse files- .gitattributes +1 -0
- CartPole-v1.zip +3 -0
- CartPole-v1/_stable_baselines3_version +1 -0
- CartPole-v1/data +94 -0
- CartPole-v1/policy.optimizer.pth +3 -0
- CartPole-v1/policy.pth +3 -0
- CartPole-v1/pytorch_variables.pth +3 -0
- CartPole-v1/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
CartPole-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e502e67396392882a5de9b80c3025d8c88718806fb3baa2f6903a839b33ee8d3
|
3 |
+
size 134412
|
CartPole-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
CartPole-v1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fc06b320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fc06b3b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fc06b440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fc06b4d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f32fc06b560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f32fc06b5f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fc06b680>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f32fc06b710>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fc06b7a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fc06b830>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fc06b8c0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f32fc0b8780>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVdgEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsEhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUjAFDlHSUUpSMBGhpZ2iUaBIolhAAAAAAAAAAmpmZQP//f39Qd9Y+//9/f5RoCksEhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgQAAAAAAAAAAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksEhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolgQAAAAAAAAAAQEBAZRoIUsEhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"shape": [
|
28 |
+
4
|
29 |
+
],
|
30 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
31 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
32 |
+
"bounded_below": "[ True True True True]",
|
33 |
+
"bounded_above": "[ True True True True]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"n": 2,
|
40 |
+
"shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 131072,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652119132.5685916,
|
51 |
+
"learning_rate": 0.0002,
|
52 |
+
"tensorboard_log": "logs",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAH5sAsCzBea/pwSbvIHWtb12E7k8RmZKPYA5ujvaKoc835PpvrE1DL8AbSC+MMm+vugjZbxk1Bo/R/gYPQAmNb8fSgq+Cx5YPlx3kryFxdu+xukwv/AtNL+sV2w7PtijPv9UiLwNLDc+RRTNvVTCPr9FuVk9s1CxvuTn6bxkfJs+pVPrPz3qvT/jUdM9KrJyPaN2Rj4/bCw7dy3lvGoCjbwfWpM9kwFdPpN/zDudEya+qN3bv7WBo78Fhcq9YMtZvqpxL79OUT6/oIsnve09dD1/Moa82B2ovKJynLw5E2G9dOCgvIvXHD017Om5amwhPXrvD0BQZYg/EDvwPaW/ij+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.3107200000000001,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFAAAAAAACMAWyUTRQBjAF0lEdAY0dzYEnss3V9lChoBkdAWMAAAAAAAGgHS2NoCEdAY0eeq7yxzXV9lChoBkdAXEAAAAAAAGgHS3FoCEdAY0kNkOI683V9lChoBkdAMgAAAAAAAGgHSxJoCEdAY0j7HAAQx3V9lChoBkdAaSAAAAAAAGgHS8loCEdAY0kd7v5P/XV9lChoBkdAbAAAAAAAAGgHS+BoCEdAY0sb6xgRb3V9lChoBkdAZKAAAAAAAGgHS6VoCEdAY0sA5q/M4nV9lChoBkdAZ0AAAAAAAGgHS7poCEdAY0xMh5gPVnV9lChoBkdAWYAAAAAAAGgHS2ZoCEdAY0xI5o4+83V9lChoBkdAYyAAAAAAAGgHS5loCEdAY046vJRwZXV9lChoBkdAWYAAAAAAAGgHS2ZoCEdAY0/UQTVUdnV9lChoBkdAZCAAAAAAAGgHS6FoCEdAY1CJj2BatHV9lChoBkdATIAAAAAAAGgHSzloCEdAY1JIxQBPsXV9lChoBkdAbYAAAAAAAGgHS+xoCEdAY1MJEYwZfnV9lChoBkdAZiAAAAAAAGgHS7FoCEdAY1LjaPCEYnV9lChoBkdAchAAAAAAAGgHTSEBaAhHQGNTbCSA6Ml1fZQoaAZHQGAAAAAAAABoB0uAaAhHQGNTeKCQLeB1fZQoaAZHQG0AAAAAAABoB0voaAhHQGNTsQmNR3x1fZQoaAZHQGZAAAAAAABoB0uyaAhHQGNTojOcDr91fZQoaAZHQGBgAAAAAABoB0uDaAhHQGNU62F36hx1fZQoaAZHQGDAAAAAAABoB0uGaAhHQGNVHLA57w91fZQoaAZHQG6gAAAAAABoB0v1aAhHQGNV8ZDRc/t1fZQoaAZHQGnAAAAAAABoB0vOaAhHQGNW7TtsvZh1fZQoaAZHQFKAAAAAAABoB0tKaAhHQGNXV+7UXpJ1fZQoaAZHQHCAAAAAAABoB00IAWgIR0BjWB17pmmMdX2UKGgGR0BsoAAAAAAAaAdL5WgIR0BjWDpPhybQdX2UKGgGR0BfwAAAAAAAaAdLf2gIR0BjW9srNGExdX2UKGgGR0BkYAAAAAAAaAdLo2gIR0BjXePmxMWXdX2UKGgGR0BggAAAAAAAaAdLhGgIR0BjXwZIg/1QdX2UKGgGR0BrYAAAAAAAaAdL22gIR0BjXyakRBeHdX2UKGgGR0BtAAAAAAAAaAdL6GgIR0BjXz+ee4CqdX2UKGgGR0BooAAAAAAAaAdLxWgIR0BjYRNbkfcOdX2UKGgGR0BqgAAAAAAAaAdL1GgIR0BjYWZJCjUNdX2UKGgGR0Bn4AAAAAAAaAdLv2gIR0BjYgZdfLLZdX2UKGgGR0BnIAAAAAAAaAdLuWgIR0BjYzSE12q2dX2UKGgGR0BlIAAAAAAAaAdLqWgIR0BjY2ivgWJrdX2UKGgGR0B5sAAAAAAAaAdNmwFoCEdAY2eSDh99dHV9lChoBkdAcgAAAAAAAGgHTSABaAhHQGNnuMVDa5B1fZQoaAZHQHJgAAAAAABoB00mAWgIR0BjaFqQA+6idX2UKGgGR0Bt4AAAAAAAaAdL72gIR0BjaP4EfT1DdX2UKGgGR0BwYAAAAAAAaAdNBgFoCEdAY2mP/aQFLXV9lChoBkdAZGAAAAAAAGgHS6NoCEdAY2mKxcE/0XV9lChoBkdAYuAAAAAAAGgHS5doCEdAY2ok690zTHV9lChoBkdAbaAAAAAAAGgHS+1oCEdAY2zfIjnmrHV9lChoBkdAdZAAAAAAAGgHTVkBaAhHQGNtfZuhsZZ1fZQoaAZHQGbAAAAAAABoB0u2aAhHQGNugrxy4nZ1fZQoaAZHQF7AAAAAAABoB0t7aAhHQGNv+LFXJYF1fZQoaAZHQGlgAAAAAABoB0vLaAhHQGNwaKLsKLN1fZQoaAZHQGbAAAAAAABoB0u2aAhHQGNwdQ40dil1fZQoaAZHQF9AAAAAAABoB0t9aAhHQGNwvZRKpUB1fZQoaAZHQGvgAAAAAABoB0vfaAhHQGNwvo3aSLZ1fZQoaAZHQHHAAAAAAABoB00cAWgIR0Bjc03EQ5FPdX2UKGgGR0BzMAAAAAAAaAdNMwFoCEdAY3SVnEl3QnV9lChoBkdAUwAAAAAAAGgHS0xoCEdAY3WR0U47zXV9lChoBkdAa4AAAAAAAGgHS9xoCEdAY3ZRE4Nqg3V9lChoBkdAamAAAAAAAGgHS9NoCEdAY3e76Hj6vnV9lChoBkdAZeAAAAAAAGgHS69oCEdAY3p4yoGY8nV9lChoBkdAdSAAAAAAAGgHTVIBaAhHQGN7FGXokiV1fZQoaAZHQGTAAAAAAABoB0umaAhHQGN7aP0Zm7J1fZQoaAZHQHFAAAAAAABoB00UAWgIR0Bje9xZMcp9dX2UKGgGR0BxsAAAAAAAaAdNGwFoCEdAY3zeVs1sL3V9lChoBkdAbgAAAAAAAGgHS/BoCEdAY30fOlfqo3V9lChoBkdAZ0AAAAAAAGgHS7poCEdAY31mHP/rB3V9lChoBkdAYQAAAAAAAGgHS4hoCEdAY32/FBIFvHV9lChoBkdAY6AAAAAAAGgHS51oCEdAY33AzHjp93V9lChoBkdAS4AAAAAAAGgHSzdoCEdAY33nGsFMZnV9lChoBkdAb6AAAAAAAGgHS/1oCEdAY35iobXHznV9lChoBkdAYWAAAAAAAGgHS4toCEdAY3/4IKMNt3V9lChoBkdAa2AAAAAAAGgHS9toCEdAY3/StNi6QXV9lChoBkdAQQAAAAAAAGgHSyJoCEdAY4BkFOfukXV9lChoBkdAcbAAAAAAAGgHTRsBaAhHQGOD1kUbkwN1fZQoaAZHQFIAAAAAAABoB0tIaAhHQGOEy2x6fJ51fZQoaAZHQGHAAAAAAABoB0uOaAhHQGOE8VQAMlV1fZQoaAZHQHjwAAAAAABoB02PAWgIR0BjhVqzqrzYdX2UKGgGR0BXAAAAAAAAaAdLXGgIR0Bjhtp/PPcBdX2UKGgGR0BlYAAAAAAAaAdLq2gIR0Bjhs+JP69CdX2UKGgGR0Bk4AAAAAAAaAdLp2gIR0Bjh1w3o9s8dX2UKGgGR0BbQAAAAAAAaAdLbWgIR0Bjh1iSaEzwdX2UKGgGR0BiAAAAAAAAaAdLkGgIR0Bjh3gBLf1pdX2UKGgGR0BtQAAAAAAAaAdL6mgIR0BjiAlOXVsldX2UKGgGR0ByAAAAAAAAaAdNIAFoCEdAY4liwSrYG3V9lChoBkdAZeAAAAAAAGgHS69oCEdAY4nWFvhqCnV9lChoBkdAZ8AAAAAAAGgHS75oCEdAY4pHmRvFWHV9lChoBkdAS4AAAAAAAGgHSzdoCEdAY4s9Zid8RnV9lChoBkdAV4AAAAAAAGgHS15oCEdAY4uNyYG+snV9lChoBkdAakAAAAAAAGgHS9JoCEdAY4xRXOnl4nV9lChoBkdAWEAAAAAAAGgHS2FoCEdAY4wuxKQJX3V9lChoBkdAagAAAAAAAGgHS9BoCEdAY4zjVhCtzXV9lChoBkdATQAAAAAAAGgHSzpoCEdAY49pJPIn0HV9lChoBkdAckAAAAAAAGgHTSQBaAhHQGORFcpsoDx1fZQoaAZHQFvAAAAAAABoB0tvaAhHQGORoEr5IpZ1fZQoaAZHQGtAAAAAAABoB0vaaAhHQGOSy9ugpSd1fZQoaAZHQGUAAAAAAABoB0uoaAhHQGOS0mUnogV1fZQoaAZHQGuAAAAAAABoB0vcaAhHQGOT57XxvvV1fZQoaAZHQGEgAAAAAABoB0uJaAhHQGOWu8CgbqB1fZQoaAZHQGugAAAAAABoB0vdaAhHQGOY8vEjxCp1fZQoaAZHQGjAAAAAAABoB0vGaAhHQGOZaQV9F4N1fZQoaAZHQHEgAAAAAABoB00SAWgIR0BjmlpqREF4dX2UKGgGR0BwkAAAAAAAaAdNCQFoCEdAY5p5bhWHUXV9lChoBkdAchAAAAAAAGgHTSEBaAhHQGOa0RFqi491ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 40,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
CartPole-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2ad830d85b9c2e40789e58ef8a5b65855dde98c53ff083d445840611573f3c4
|
3 |
+
size 79709
|
CartPole-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73ee5ba043a2305cc525a7be434ef59a11372978fd164470d4e4877762fe41d8
|
3 |
+
size 40641
|
CartPole-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
CartPole-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.17.3
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartPole-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 445.30 +/- 66.09
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: CartPole-v1
|
20 |
+
type: CartPole-v1
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **CartPole-v1**
|
24 |
+
This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f32fc06b320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f32fc06b3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f32fc06b440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f32fc06b4d0>", "_build": "<function ActorCriticPolicy._build at 0x7f32fc06b560>", "forward": "<function ActorCriticPolicy.forward at 0x7f32fc06b5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f32fc06b680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f32fc06b710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f32fc06b7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f32fc06b830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f32fc06b8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f32fc0b8780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdgEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsEhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUjAFDlHSUUpSMBGhpZ2iUaBIolhAAAAAAAAAAmpmZQP//f39Qd9Y+//9/f5RoCksEhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgQAAAAAAAAAAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksEhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolgQAAAAAAAAAAQEBAZRoIUsEhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 2, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652119132.5685916, "learning_rate": 0.0002, "tensorboard_log": "logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAH5sAsCzBea/pwSbvIHWtb12E7k8RmZKPYA5ujvaKoc835PpvrE1DL8AbSC+MMm+vugjZbxk1Bo/R/gYPQAmNb8fSgq+Cx5YPlx3kryFxdu+xukwv/AtNL+sV2w7PtijPv9UiLwNLDc+RRTNvVTCPr9FuVk9s1CxvuTn6bxkfJs+pVPrPz3qvT/jUdM9KrJyPaN2Rj4/bCw7dy3lvGoCjbwfWpM9kwFdPpN/zDudEya+qN3bv7WBo78Fhcq9YMtZvqpxL79OUT6/oIsnve09dD1/Moa82B2ovKJynLw5E2G9dOCgvIvXHD017Om5amwhPXrvD0BQZYg/EDvwPaW/ij+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFAAAAAAACMAWyUTRQBjAF0lEdAY0dzYEnss3V9lChoBkdAWMAAAAAAAGgHS2NoCEdAY0eeq7yxzXV9lChoBkdAXEAAAAAAAGgHS3FoCEdAY0kNkOI683V9lChoBkdAMgAAAAAAAGgHSxJoCEdAY0j7HAAQx3V9lChoBkdAaSAAAAAAAGgHS8loCEdAY0kd7v5P/XV9lChoBkdAbAAAAAAAAGgHS+BoCEdAY0sb6xgRb3V9lChoBkdAZKAAAAAAAGgHS6VoCEdAY0sA5q/M4nV9lChoBkdAZ0AAAAAAAGgHS7poCEdAY0xMh5gPVnV9lChoBkdAWYAAAAAAAGgHS2ZoCEdAY0xI5o4+83V9lChoBkdAYyAAAAAAAGgHS5loCEdAY046vJRwZXV9lChoBkdAWYAAAAAAAGgHS2ZoCEdAY0/UQTVUdnV9lChoBkdAZCAAAAAAAGgHS6FoCEdAY1CJj2BatHV9lChoBkdATIAAAAAAAGgHSzloCEdAY1JIxQBPsXV9lChoBkdAbYAAAAAAAGgHS+xoCEdAY1MJEYwZfnV9lChoBkdAZiAAAAAAAGgHS7FoCEdAY1LjaPCEYnV9lChoBkdAchAAAAAAAGgHTSEBaAhHQGNTbCSA6Ml1fZQoaAZHQGAAAAAAAABoB0uAaAhHQGNTeKCQLeB1fZQoaAZHQG0AAAAAAABoB0voaAhHQGNTsQmNR3x1fZQoaAZHQGZAAAAAAABoB0uyaAhHQGNTojOcDr91fZQoaAZHQGBgAAAAAABoB0uDaAhHQGNU62F36hx1fZQoaAZHQGDAAAAAAABoB0uGaAhHQGNVHLA57w91fZQoaAZHQG6gAAAAAABoB0v1aAhHQGNV8ZDRc/t1fZQoaAZHQGnAAAAAAABoB0vOaAhHQGNW7TtsvZh1fZQoaAZHQFKAAAAAAABoB0tKaAhHQGNXV+7UXpJ1fZQoaAZHQHCAAAAAAABoB00IAWgIR0BjWB17pmmMdX2UKGgGR0BsoAAAAAAAaAdL5WgIR0BjWDpPhybQdX2UKGgGR0BfwAAAAAAAaAdLf2gIR0BjW9srNGExdX2UKGgGR0BkYAAAAAAAaAdLo2gIR0BjXePmxMWXdX2UKGgGR0BggAAAAAAAaAdLhGgIR0BjXwZIg/1QdX2UKGgGR0BrYAAAAAAAaAdL22gIR0BjXyakRBeHdX2UKGgGR0BtAAAAAAAAaAdL6GgIR0BjXz+ee4CqdX2UKGgGR0BooAAAAAAAaAdLxWgIR0BjYRNbkfcOdX2UKGgGR0BqgAAAAAAAaAdL1GgIR0BjYWZJCjUNdX2UKGgGR0Bn4AAAAAAAaAdLv2gIR0BjYgZdfLLZdX2UKGgGR0BnIAAAAAAAaAdLuWgIR0BjYzSE12q2dX2UKGgGR0BlIAAAAAAAaAdLqWgIR0BjY2ivgWJrdX2UKGgGR0B5sAAAAAAAaAdNmwFoCEdAY2eSDh99dHV9lChoBkdAcgAAAAAAAGgHTSABaAhHQGNnuMVDa5B1fZQoaAZHQHJgAAAAAABoB00mAWgIR0BjaFqQA+6idX2UKGgGR0Bt4AAAAAAAaAdL72gIR0BjaP4EfT1DdX2UKGgGR0BwYAAAAAAAaAdNBgFoCEdAY2mP/aQFLXV9lChoBkdAZGAAAAAAAGgHS6NoCEdAY2mKxcE/0XV9lChoBkdAYuAAAAAAAGgHS5doCEdAY2ok690zTHV9lChoBkdAbaAAAAAAAGgHS+1oCEdAY2zfIjnmrHV9lChoBkdAdZAAAAAAAGgHTVkBaAhHQGNtfZuhsZZ1fZQoaAZHQGbAAAAAAABoB0u2aAhHQGNugrxy4nZ1fZQoaAZHQF7AAAAAAABoB0t7aAhHQGNv+LFXJYF1fZQoaAZHQGlgAAAAAABoB0vLaAhHQGNwaKLsKLN1fZQoaAZHQGbAAAAAAABoB0u2aAhHQGNwdQ40dil1fZQoaAZHQF9AAAAAAABoB0t9aAhHQGNwvZRKpUB1fZQoaAZHQGvgAAAAAABoB0vfaAhHQGNwvo3aSLZ1fZQoaAZHQHHAAAAAAABoB00cAWgIR0Bjc03EQ5FPdX2UKGgGR0BzMAAAAAAAaAdNMwFoCEdAY3SVnEl3QnV9lChoBkdAUwAAAAAAAGgHS0xoCEdAY3WR0U47zXV9lChoBkdAa4AAAAAAAGgHS9xoCEdAY3ZRE4Nqg3V9lChoBkdAamAAAAAAAGgHS9NoCEdAY3e76Hj6vnV9lChoBkdAZeAAAAAAAGgHS69oCEdAY3p4yoGY8nV9lChoBkdAdSAAAAAAAGgHTVIBaAhHQGN7FGXokiV1fZQoaAZHQGTAAAAAAABoB0umaAhHQGN7aP0Zm7J1fZQoaAZHQHFAAAAAAABoB00UAWgIR0Bje9xZMcp9dX2UKGgGR0BxsAAAAAAAaAdNGwFoCEdAY3zeVs1sL3V9lChoBkdAbgAAAAAAAGgHS/BoCEdAY30fOlfqo3V9lChoBkdAZ0AAAAAAAGgHS7poCEdAY31mHP/rB3V9lChoBkdAYQAAAAAAAGgHS4hoCEdAY32/FBIFvHV9lChoBkdAY6AAAAAAAGgHS51oCEdAY33AzHjp93V9lChoBkdAS4AAAAAAAGgHSzdoCEdAY33nGsFMZnV9lChoBkdAb6AAAAAAAGgHS/1oCEdAY35iobXHznV9lChoBkdAYWAAAAAAAGgHS4toCEdAY3/4IKMNt3V9lChoBkdAa2AAAAAAAGgHS9toCEdAY3/StNi6QXV9lChoBkdAQQAAAAAAAGgHSyJoCEdAY4BkFOfukXV9lChoBkdAcbAAAAAAAGgHTRsBaAhHQGOD1kUbkwN1fZQoaAZHQFIAAAAAAABoB0tIaAhHQGOEy2x6fJ51fZQoaAZHQGHAAAAAAABoB0uOaAhHQGOE8VQAMlV1fZQoaAZHQHjwAAAAAABoB02PAWgIR0BjhVqzqrzYdX2UKGgGR0BXAAAAAAAAaAdLXGgIR0Bjhtp/PPcBdX2UKGgGR0BlYAAAAAAAaAdLq2gIR0Bjhs+JP69CdX2UKGgGR0Bk4AAAAAAAaAdLp2gIR0Bjh1w3o9s8dX2UKGgGR0BbQAAAAAAAaAdLbWgIR0Bjh1iSaEzwdX2UKGgGR0BiAAAAAAAAaAdLkGgIR0Bjh3gBLf1pdX2UKGgGR0BtQAAAAAAAaAdL6mgIR0BjiAlOXVsldX2UKGgGR0ByAAAAAAAAaAdNIAFoCEdAY4liwSrYG3V9lChoBkdAZeAAAAAAAGgHS69oCEdAY4nWFvhqCnV9lChoBkdAZ8AAAAAAAGgHS75oCEdAY4pHmRvFWHV9lChoBkdAS4AAAAAAAGgHSzdoCEdAY4s9Zid8RnV9lChoBkdAV4AAAAAAAGgHS15oCEdAY4uNyYG+snV9lChoBkdAakAAAAAAAGgHS9JoCEdAY4xRXOnl4nV9lChoBkdAWEAAAAAAAGgHS2FoCEdAY4wuxKQJX3V9lChoBkdAagAAAAAAAGgHS9BoCEdAY4zjVhCtzXV9lChoBkdATQAAAAAAAGgHSzpoCEdAY49pJPIn0HV9lChoBkdAckAAAAAAAGgHTSQBaAhHQGORFcpsoDx1fZQoaAZHQFvAAAAAAABoB0tvaAhHQGORoEr5IpZ1fZQoaAZHQGtAAAAAAABoB0vaaAhHQGOSy9ugpSd1fZQoaAZHQGUAAAAAAABoB0uoaAhHQGOS0mUnogV1fZQoaAZHQGuAAAAAAABoB0vcaAhHQGOT57XxvvV1fZQoaAZHQGEgAAAAAABoB0uJaAhHQGOWu8CgbqB1fZQoaAZHQGugAAAAAABoB0vdaAhHQGOY8vEjxCp1fZQoaAZHQGjAAAAAAABoB0vGaAhHQGOZaQV9F4N1fZQoaAZHQHEgAAAAAABoB00SAWgIR0BjmlpqREF4dX2UKGgGR0BwkAAAAAAAaAdNCQFoCEdAY5p5bhWHUXV9lChoBkdAchAAAAAAAGgHTSEBaAhHQGOa0RFqi491ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e525dca7e3c7b2e5321c0e9d921819e11493f9e531db15bfbd20989027418cf9
|
3 |
+
size 75678
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 445.3, "std_reward": 66.08940913641156, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T18:04:02.495799"}
|