emilys commited on
Commit
e0a6d00
·
1 Parent(s): 41ab45a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - wnut_17
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: twitter-roberta-base-WNUT
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: wnut_17
19
+ type: wnut_17
20
+ args: wnut_17
21
+ metrics:
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.7024901703800787
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.6411483253588517
28
+ - name: F1
29
+ type: f1
30
+ value: 0.6704190118824266
31
+ - name: Accuracy
32
+ type: accuracy
33
+ value: 0.9645967075573635
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # twitter-roberta-base-WNUT
40
+
41
+ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the wnut_17 dataset.
42
+ It achieves the following results on the evaluation set:
43
+ - Loss: 0.1880
44
+ - Precision: 0.7025
45
+ - Recall: 0.6411
46
+ - F1: 0.6704
47
+ - Accuracy: 0.9646
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 2e-05
67
+ - train_batch_size: 64
68
+ - eval_batch_size: 1024
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - num_epochs: 10
73
+
74
+ ### Training results
75
+
76
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
77
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
78
+ | No log | 0.46 | 25 | 0.3912 | 0.0 | 0.0 | 0.0 | 0.9205 |
79
+ | No log | 0.93 | 50 | 0.2847 | 0.25 | 0.0024 | 0.0047 | 0.9209 |
80
+ | No log | 1.39 | 75 | 0.2449 | 0.5451 | 0.3469 | 0.4240 | 0.9426 |
81
+ | No log | 1.85 | 100 | 0.1946 | 0.6517 | 0.4856 | 0.5565 | 0.9492 |
82
+ | No log | 2.31 | 125 | 0.1851 | 0.6921 | 0.5646 | 0.6219 | 0.9581 |
83
+ | No log | 2.78 | 150 | 0.1672 | 0.6867 | 0.5873 | 0.6331 | 0.9594 |
84
+ | No log | 3.24 | 175 | 0.1675 | 0.6787 | 0.5837 | 0.6277 | 0.9615 |
85
+ | No log | 3.7 | 200 | 0.1644 | 0.6765 | 0.6328 | 0.6539 | 0.9638 |
86
+ | No log | 4.17 | 225 | 0.1672 | 0.6997 | 0.6495 | 0.6737 | 0.9640 |
87
+ | No log | 4.63 | 250 | 0.1652 | 0.6915 | 0.6435 | 0.6667 | 0.9649 |
88
+ | No log | 5.09 | 275 | 0.1882 | 0.7067 | 0.6053 | 0.6521 | 0.9629 |
89
+ | No log | 5.56 | 300 | 0.1783 | 0.7128 | 0.6352 | 0.6717 | 0.9645 |
90
+ | No log | 6.02 | 325 | 0.1813 | 0.7011 | 0.6172 | 0.6565 | 0.9639 |
91
+ | No log | 6.48 | 350 | 0.1804 | 0.7139 | 0.6447 | 0.6776 | 0.9647 |
92
+ | No log | 6.94 | 375 | 0.1902 | 0.7218 | 0.6268 | 0.6709 | 0.9641 |
93
+ | No log | 7.41 | 400 | 0.1883 | 0.7106 | 0.6316 | 0.6688 | 0.9641 |
94
+ | No log | 7.87 | 425 | 0.1862 | 0.7067 | 0.6340 | 0.6683 | 0.9643 |
95
+ | No log | 8.33 | 450 | 0.1882 | 0.7053 | 0.6328 | 0.6671 | 0.9639 |
96
+ | No log | 8.8 | 475 | 0.1919 | 0.7055 | 0.6304 | 0.6658 | 0.9638 |
97
+ | 0.1175 | 9.26 | 500 | 0.1938 | 0.7045 | 0.6304 | 0.6654 | 0.9640 |
98
+ | 0.1175 | 9.72 | 525 | 0.1880 | 0.7025 | 0.6411 | 0.6704 | 0.9646 |
99
+
100
+
101
+ ### Framework versions
102
+
103
+ - Transformers 4.20.1
104
+ - Pytorch 1.12.0
105
+ - Datasets 2.3.2
106
+ - Tokenizers 0.12.1