File size: 20,016 Bytes
f4f7ed0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Autoeval"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2024-12-02T11:56:29.397635Z",
"iopub.status.busy": "2024-12-02T11:56:29.397111Z",
"iopub.status.idle": "2024-12-02T11:56:29.411850Z",
"shell.execute_reply": "2024-12-02T11:56:29.410508Z",
"shell.execute_reply.started": "2024-12-02T11:56:29.397590Z"
},
"trusted": true
},
"outputs": [],
"source": [
"import os\n",
"source_model = \"unsloth/Llama-3.2-3B-Instruct\"\n",
"destination_model = \"Llama-3.2-3B-appreciation\"\n",
"dataset_url = \"eltorio/appreciation\"\n",
"epoch = 5\n",
"push_to_hub = True if os.path.exists('/kaggle/working') else False\n",
"output_directory = '/kaggle/working' if os.path.exists('/kaggle/working') else './'\n",
"kaggle_model = f\"eltorio/{destination_model.lower()}/transformers/default\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install the required libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"%%capture\n",
"!pip install -U \"safetensors>=0.4.5\"\n",
"!pip install -U tensorflow\n",
"!pip install -U \"https://github.com/bitsandbytes-foundation/bitsandbytes/releases/download/continuous-release_main/bitsandbytes-0.44.2.dev0-py3-none-manylinux_2_24_x86_64.whl\"\n",
"!pip install -U git+https://github.com/huggingface/transformers.git\n",
"!pip install huggingface_hub[cli] accelerate datasets peft\n",
"!pip install pip3-autoremove\n",
"!pip-autoremove torch torchvision torchaudio -y\n",
"!pip install torch torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/cu121\n",
"!pip install unsloth\n",
"!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git\n",
"!pip install tf-keras"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Log in Kaggle"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"if not os.path.exists('/kaggle/.kaggle/kaggle.json'):\n",
" try:\n",
" from kaggle_secrets import UserSecretsClient\n",
" user_secrets = UserSecretsClient()\n",
" KAGGLE_JSON = user_secrets.get_secret(\"KAGGLE_JSON\")\n",
" except:\n",
" KAGGLE_JSON = os.getenv(\"KAGGLE_JSON\")\n",
"\n",
" kaggle_dir = os.path.expanduser(\"~/.kaggle\")\n",
" kaggle_file = os.path.join(kaggle_dir, \"kaggle.json\")\n",
"\n",
" os.makedirs(kaggle_dir, exist_ok=True)\n",
"\n",
" with open(kaggle_file, 'w') as file:\n",
" json.dump(KAGGLE_JSON, file)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Login WandB"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import wandb\n",
"try:\n",
" from kaggle_secrets import UserSecretsClient\n",
" user_secrets = UserSecretsClient()\n",
" WANDB_API_KEY = user_secrets.get_secret(\"WANDB_API_KEY\")\n",
" os.environ[\"WANDB_API_KEY\"] = WANDB_API_KEY\n",
"except:\n",
" if os.getenv(\"WANDB_API_KEY\") is None:\n",
" os.environ[\"WANDB_API_KEY\"] = input(\"Enter your W&B API key: \")\n",
"\n",
"if not wandb.login():\n",
" raise Exception(\"Can't login to W&B\")\n",
"else:\n",
" print(\"Logged in to W&B\")\n",
" os.environ[\"WANDB_PROJECT\"]=destination_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Log in Hugging hub"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"from huggingface_hub import login\n",
"import os\n",
"\n",
"try:\n",
" from kaggle_secrets import UserSecretsClient\n",
" user_secrets = UserSecretsClient()\n",
" HF_TOKEN = user_secrets.get_secret(\"HF_TOKEN\")\n",
" os.environ[\"HF_TOKEN\"] = HF_TOKEN\n",
"except:\n",
" if not os.getenv(\"HF_TOKEN\"):\n",
" raise ValueError(\"You need to set the HF_TOKEN environment variable.\")\n",
" HF_TOKEN = os.getenv(\"HF_TOKEN\")\n",
"\n",
"print(f\"Login with {HF_TOKEN}\")\n",
"login(\n",
" token=HF_TOKEN,\n",
" add_to_git_credential=False\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training parameters"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"from unsloth import FastLanguageModel\n",
"import torch\n",
"\n",
"max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n",
"dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n",
"load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the source model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
" model_name = source_model, # or choose \"unsloth/Llama-3.2-1B-Instruct\"\n",
" max_seq_length = max_seq_length,\n",
" dtype = dtype,\n",
" load_in_4bit = load_in_4bit,\n",
" token = HF_TOKEN,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Add the Peft model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"model = FastLanguageModel.get_peft_model(\n",
" model,\n",
" r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n",
" target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
" \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
" lora_alpha = 16,\n",
" lora_dropout = 0, # Supports any, but = 0 is optimized\n",
" bias = \"none\", # Supports any, but = \"none\" is optimized\n",
" # [NEW] \"unsloth\" uses 30% less VRAM, fits 2x larger batch sizes!\n",
" use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for very long context\n",
" random_state = 3407,\n",
" use_rslora = False, # We support rank stabilized LoRA\n",
" loftq_config = None, # And LoftQ\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Read the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2024-12-02T11:56:34.316028Z",
"iopub.status.busy": "2024-12-02T11:56:34.315647Z",
"iopub.status.idle": "2024-12-02T11:56:36.257132Z",
"shell.execute_reply": "2024-12-02T11:56:36.255969Z",
"shell.execute_reply.started": "2024-12-02T11:56:34.315997Z"
},
"trusted": true
},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"dataset = load_dataset(dataset_url)\n",
"dataset['train']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create the messages from the data\n",
"\n",
"The data is in the form of a csv file with the following columns:\n",
"\n",
"```csv\n",
"\n",
"Id,redoublant,matière,trimestre,note 1er trimestre,note 2ème trimestre,note 3ème trimestre,comportement 0-10,participation 0-10,travail 0-10,commentaire\n",
"\n",
"0,0,,1,\"Mauvais trimestre, manque de travail\",5.0,,,5.0,5.0,5.0,X a beaucoup de difficultés dues à des lacunes mais aussi à un manque de travail qui ne permet pas de les combler. Il faut s'y mettre au prochain trimestre.\n",
"\n",
"```\n",
"\n",
"We need to create HuggingFace's normal multiturn format "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2024-12-02T11:56:45.923298Z",
"iopub.status.busy": "2024-12-02T11:56:45.922896Z",
"iopub.status.idle": "2024-12-02T11:56:45.933706Z",
"shell.execute_reply": "2024-12-02T11:56:45.932503Z",
"shell.execute_reply.started": "2024-12-02T11:56:45.923263Z"
},
"trusted": true
},
"outputs": [],
"source": [
"def create_training_turn(row):\n",
" trimestre = row['trimestre']\n",
" redoublant = 'redoublant ' if row['redoublant'] == 1 else ''\n",
" moyenne_1 = row['note 1er trimestre'] if not isinstance(row['note 1er trimestre'],float|int) else 'N/A'\n",
" moyenne_2 = row['note 2ème trimestre'] if not isinstance(row['note 2ème trimestre'],float|int) else 'N/A'\n",
" moyenne_3 = row['note 3ème trimestre'] if not isinstance(row['note 3ème trimestre'],float|int) else 'N/A'\n",
" comportement = row['comportement 0-10']\n",
" participation = row['participation 0-10']\n",
" travail = row['travail 0-10']\n",
" system_prompt = \"Vous êtes une IA assistant les enseignants d'histoire-géographie en rédigeant à leur place une appréciation personnalisée pour leur élève en fonction de ses performances. Votre appréciation doit être en français formel et impersonnel. Votre appréciation doit être bienveillante, constructive, et aider l'élève à comprendre ses points forts et les axes d'amélioration. Votre appréciation doit comporter de 8 à 250 caractères. Votre appréciation ne doit jamais comporter les valeurs des notes. \"\n",
"\n",
" if trimestre == 1:\n",
" trimestre_full = \"premier trimestre\"\n",
" user_input = f\"Veuillez rédiger une appréciation en moins de 250 caractères pour le {trimestre_full} pour cet élève {redoublant}qui a eu {moyenne_1} de moyenne, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation.\"\n",
" elif trimestre == 2:\n",
" trimestre_full = \"deuxième trimestre\"\n",
" user_input = f\"Veuillez rédiger une appréciation en moins de 250 caractères pour le {trimestre_full} pour cet élève {redoublant}qui a eu {moyenne_2} de moyenne ce trimestre et {moyenne_1} au premier trimestre, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation.\"\n",
" elif trimestre == 3:\n",
" trimestre_full = \"troisième trimestre\"\n",
" user_input = f\"Veuillez rédiger une appréciation en moins de 250 caractères pour le {trimestre_full} pour cet élève {redoublant}qui a eu {moyenne_3} de moyenne ce trimestre, {moyenne_2} au deuxième trimestre et {moyenne_1} au premier trimestre, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation.\"\n",
"\n",
" assistant_response = row['commentaire']\n",
"\n",
" return {\"conversation\":[\n",
" {\"role\": \"system\", \"content\":system_prompt},\n",
" {\"role\": \"user\", \"content\":user_input},\n",
" {\"role\": \"assistant\", \"content\":assistant_response}\n",
" ]}\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check the function"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2024-12-02T11:56:50.058458Z",
"iopub.status.busy": "2024-12-02T11:56:50.058002Z",
"iopub.status.idle": "2024-12-02T11:56:50.066899Z",
"shell.execute_reply": "2024-12-02T11:56:50.065730Z",
"shell.execute_reply.started": "2024-12-02T11:56:50.058406Z"
},
"trusted": true
},
"outputs": [],
"source": [
"test_row = dataset['train'][68]\n",
"create_training_turn(test_row)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create the dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2024-12-02T11:56:58.639949Z",
"iopub.status.busy": "2024-12-02T11:56:58.639529Z",
"iopub.status.idle": "2024-12-02T11:56:59.178999Z",
"shell.execute_reply": "2024-12-02T11:56:59.177678Z",
"shell.execute_reply.started": "2024-12-02T11:56:58.639912Z"
},
"trusted": true
},
"outputs": [],
"source": [
"multi_turn_dataset = dataset.map(create_training_turn)\n",
"multi_turn_dataset['train'][68]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tokenize the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"from unsloth.chat_templates import get_chat_template\n",
"\n",
"tokenizer = get_chat_template(\n",
" tokenizer,\n",
" chat_template = \"llama-3.1\",\n",
")\n",
"\n",
"def formatting_prompts_func(messages):\n",
" convos = messages[\"conversation\"]\n",
" texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]\n",
" return { \"text\" : texts, }\n",
"pass\n",
"\n",
"multi_turn_dataset = multi_turn_dataset.map(\n",
" formatting_prompts_func,\n",
" batched=True,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check the tokenized data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"execution": {
"iopub.execute_input": "2024-12-02T11:57:11.739989Z",
"iopub.status.busy": "2024-12-02T11:57:11.739580Z",
"iopub.status.idle": "2024-12-02T11:57:12.535408Z",
"shell.execute_reply": "2024-12-02T11:57:12.533818Z",
"shell.execute_reply.started": "2024-12-02T11:57:11.739953Z"
},
"trusted": true
},
"outputs": [],
"source": [
"multi_turn_dataset[\"train\"][\"text\"][278]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Parmeters for training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"from trl import SFTTrainer\n",
"from transformers import TrainingArguments, DataCollatorForSeq2Seq\n",
"from unsloth import is_bfloat16_supported\n",
"\n",
"trainer = SFTTrainer(\n",
" model = model,\n",
" tokenizer = tokenizer,\n",
" train_dataset = multi_turn_dataset[\"train\"],\n",
" eval_dataset=multi_turn_dataset[\"validation\"],\n",
" dataset_text_field = \"text\",\n",
"\n",
" max_seq_length = max_seq_length,\n",
" data_collator = DataCollatorForSeq2Seq(tokenizer = tokenizer),\n",
" dataset_num_proc = 2,\n",
" packing = False, # Can make training 5x faster for short sequences.\n",
" args = TrainingArguments(\n",
" per_device_train_batch_size = 2,\n",
" gradient_accumulation_steps = 4,\n",
" warmup_steps = 5,\n",
" num_train_epochs = epoch, # Set this for 1 full training run.\n",
" eval_strategy=\"epoch\",\n",
" save_strategy=\"epoch\",\n",
" logging_strategy=\"epoch\",\n",
" # max_steps = 60,\n",
" learning_rate = 2e-4,\n",
" fp16 = not is_bfloat16_supported(),\n",
" bf16 = is_bfloat16_supported(),\n",
" logging_steps = 1,\n",
" optim = \"adamw_8bit\",\n",
" weight_decay = 0.01,\n",
" lr_scheduler_type = \"linear\",\n",
" seed = 3407,\n",
" output_dir = output_directory,\n",
" report_to = \"wandb\", # Use this for WandB etc\n",
" push_to_hub = push_to_hub,\n",
" hub_model_id = destination_model\n",
" ),\n",
"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"from unsloth.chat_templates import train_on_responses_only\n",
"\n",
"trainer = train_on_responses_only(\n",
" trainer,\n",
" instruction_part = \"<|start_header_id|>user<|end_header_id|>\\n\\n\",\n",
" response_part = \"<|start_header_id|>assistant<|end_header_id|>\\n\\n\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"tokenizer.decode(trainer.train_dataset[5][\"input_ids\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"space = tokenizer(\" \", add_special_tokens = False).input_ids[0]\n",
"tokenizer.decode([space if x == -100 else x for x in trainer.train_dataset[5][\"labels\"]])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Create the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"trainer_stats = trainer.train()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Publish to Kaggle"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": [
"import kagglehub\n",
"import os\n",
"import re\n",
"\n",
"def get_latest_checkpoint(directory):\n",
" # Liste tous les répertoires dans le répertoire donné\n",
" subdirs = [d for d in os.listdir(directory) if os.path.isdir(os.path.join(directory, d))]\n",
" # Filtre les répertoires qui correspondent au format \"checkpoint_xxx\"\n",
" checkpoint_dirs = [d for d in subdirs if re.match(r'checkpoint-\\d+', d)]\n",
" print(checkpoint_dirs)\n",
" # Extrait les valeurs numériques et trouve la plus élevée\n",
" max_checkpoint = max(checkpoint_dirs, key=lambda x: int(x.split('-')[1]))\n",
" print(max_checkpoint)\n",
" return os.path.join(directory, max_checkpoint)\n",
"\n",
"\n",
"latest_checkpoint = get_latest_checkpoint(output_directory)\n",
"print(f'The newest model is : {latest_checkpoint}')\n",
"\n",
"kagglehub.login()\n",
"kagglehub.model_upload(\n",
" handle= kaggle_model,\n",
" local_model_dir = latest_checkpoint\n",
")\n"
]
}
],
"metadata": {
"kaggle": {
"accelerator": "none",
"dataSources": [
{
"datasetId": 6161747,
"sourceId": 10010677,
"sourceType": "datasetVersion"
}
],
"dockerImageVersionId": 30787,
"isGpuEnabled": false,
"isInternetEnabled": true,
"language": "python",
"sourceType": "notebook"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|