File size: 29,504 Bytes
fc8db67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
---
base_model: TaylorAI/bge-micro-v2
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:11863
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: In the fiscal year 2022, the emissions were categorized into different
    scopes, with each scope representing a specific source of emissions
  sentences:
  - 'Question: What is NetLink proactive in identifying to be more efficient in? '
  - What standard is the Environment, Health, and Safety Management System (EHSMS)
    audited to by a third-party accredited certification body at the operational assets
    level of CLI?
  - What do the different scopes represent in terms of emissions in the fiscal year
    2022?
- source_sentence: NetLink is committed to protecting the security of all information
    and information systems, including both end-user data and corporate data. To this
    end, management ensures that the appropriate IT policies, personal data protection
    policy, risk mitigation strategies, cyber security programmes, systems, processes,
    and controls are in place to protect our IT systems and confidential data
  sentences:
  - '"What recognition did NetLink receive in FY22?"'
  - What measures does NetLink have in place to protect the security of all information
    and information systems, including end-user data and corporate data?
  - 'Question: What does Disclosure 102-10 discuss regarding the organization and
    its supply chain?'
- source_sentence: In the domain of economic performance, the focus is on the financial
    health and growth of the organization, ensuring sustainable profitability and
    value creation for stakeholders
  sentences:
  - What does NetLink prioritize by investing in its network to ensure reliability
    and quality of infrastructure?
  - What percentage of the total energy was accounted for by heat, steam, and chilled
    water in 2021 according to the given information?
  - What is the focus in the domain of economic performance, ensuring sustainable
    profitability and value creation for stakeholders?
- source_sentence: Disclosure 102-41 discusses collective bargaining agreements and
    is found on page 98
  sentences:
  - What topic is discussed in Disclosure 102-41 on page 98 of the document?
  - What was the number of cases in 2021, following a decrease from 42 cases in 2020?
  - What type of data does GRI 101 provide in relation to connecting the nation?
- source_sentence: Employee health and well-being has never been more topical than
    it was in the past year. We understand that people around the world, including
    our employees, have been increasingly exposed to factors affecting their physical
    and mental wellbeing. We are committed to creating an environment that supports
    our employees and ensures they feel valued and have a sense of belonging. We utilised
  sentences:
  - What aspect of the standard covers the evaluation of the management approach?
  - 'Question: What is the company''s commitment towards its employees'' health and
    well-being based on the provided context information?'
  - What types of skills does NetLink focus on developing through their training and
    development opportunities for employees?
model-index:
- name: BGE micro v2 ESG
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.7393576666947652
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8871280451825002
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9143555593020315
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9382955407569755
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7393576666947652
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2957093483941667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1828711118604063
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09382955407569755
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.020537712963743484
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.024642445699513908
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.02539876553616755
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.026063765021027103
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.18655528566337626
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8176322873975245
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.022756262897092067
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.731602461434713
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8831661468431257
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9111523223467926
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9355137823484785
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.731602461434713
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2943887156143752
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18223046446935853
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09355137823484787
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.020322290595408698
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.024532392967864608
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.02530978673185536
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.02598649395412441
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.1854736961250685
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8120234114607371
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.022602117473168613
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.7171035994267891
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8735564359774087
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9012897243530305
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.927927168507123
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7171035994267891
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2911854786591362
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1802579448706061
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09279271685071232
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.019919544428521924
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.02426545655492803
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.025035825676473073
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.025775754680753424
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.18301753980732727
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7997301868287288
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.022264162086570314
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6758829975554245
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8359605496080249
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8713647475343504
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9060945797858889
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6758829975554245
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2786535165360083
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1742729495068701
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0906094579785889
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.018774527709872903
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.0232211263780007
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.024204576320398637
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.025169293882941365
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.17554680827328792
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7621402212294056
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.02123787521914149
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 32
      type: dim_32
    metrics:
    - type: cosine_accuracy@1
      value: 0.575908286268229
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7347214026806036
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.780156790019388
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8298069628255922
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.575908286268229
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24490713422686783
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1560313580038776
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08298069628255922
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.015997452396339696
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.020408927852238995
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.021671021944983007
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.02305019341182201
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.1551668722356578
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6648409286443452
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.01858718928494409
      name: Cosine Map@100
---

# BGE micro v2 ESG

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) <!-- at revision 3edf6d7de0faa426b09780416fe61009f26ae589 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("elsayovita/bge-micro-v2-esg")
# Run inference
sentences = [
    'Employee health and well-being has never been more topical than it was in the past year. We understand that people around the world, including our employees, have been increasingly exposed to factors affecting their physical and mental wellbeing. We are committed to creating an environment that supports our employees and ensures they feel valued and have a sense of belonging. We utilised',
    "Question: What is the company's commitment towards its employees' health and well-being based on the provided context information?",
    'What types of skills does NetLink focus on developing through their training and development opportunities for employees?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7394     |
| cosine_accuracy@3   | 0.8871     |
| cosine_accuracy@5   | 0.9144     |
| cosine_accuracy@10  | 0.9383     |
| cosine_precision@1  | 0.7394     |
| cosine_precision@3  | 0.2957     |
| cosine_precision@5  | 0.1829     |
| cosine_precision@10 | 0.0938     |
| cosine_recall@1     | 0.0205     |
| cosine_recall@3     | 0.0246     |
| cosine_recall@5     | 0.0254     |
| cosine_recall@10    | 0.0261     |
| cosine_ndcg@10      | 0.1866     |
| cosine_mrr@10       | 0.8176     |
| **cosine_map@100**  | **0.0228** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7316     |
| cosine_accuracy@3   | 0.8832     |
| cosine_accuracy@5   | 0.9112     |
| cosine_accuracy@10  | 0.9355     |
| cosine_precision@1  | 0.7316     |
| cosine_precision@3  | 0.2944     |
| cosine_precision@5  | 0.1822     |
| cosine_precision@10 | 0.0936     |
| cosine_recall@1     | 0.0203     |
| cosine_recall@3     | 0.0245     |
| cosine_recall@5     | 0.0253     |
| cosine_recall@10    | 0.026      |
| cosine_ndcg@10      | 0.1855     |
| cosine_mrr@10       | 0.812      |
| **cosine_map@100**  | **0.0226** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7171     |
| cosine_accuracy@3   | 0.8736     |
| cosine_accuracy@5   | 0.9013     |
| cosine_accuracy@10  | 0.9279     |
| cosine_precision@1  | 0.7171     |
| cosine_precision@3  | 0.2912     |
| cosine_precision@5  | 0.1803     |
| cosine_precision@10 | 0.0928     |
| cosine_recall@1     | 0.0199     |
| cosine_recall@3     | 0.0243     |
| cosine_recall@5     | 0.025      |
| cosine_recall@10    | 0.0258     |
| cosine_ndcg@10      | 0.183      |
| cosine_mrr@10       | 0.7997     |
| **cosine_map@100**  | **0.0223** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6759     |
| cosine_accuracy@3   | 0.836      |
| cosine_accuracy@5   | 0.8714     |
| cosine_accuracy@10  | 0.9061     |
| cosine_precision@1  | 0.6759     |
| cosine_precision@3  | 0.2787     |
| cosine_precision@5  | 0.1743     |
| cosine_precision@10 | 0.0906     |
| cosine_recall@1     | 0.0188     |
| cosine_recall@3     | 0.0232     |
| cosine_recall@5     | 0.0242     |
| cosine_recall@10    | 0.0252     |
| cosine_ndcg@10      | 0.1755     |
| cosine_mrr@10       | 0.7621     |
| **cosine_map@100**  | **0.0212** |

#### Information Retrieval
* Dataset: `dim_32`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.5759     |
| cosine_accuracy@3   | 0.7347     |
| cosine_accuracy@5   | 0.7802     |
| cosine_accuracy@10  | 0.8298     |
| cosine_precision@1  | 0.5759     |
| cosine_precision@3  | 0.2449     |
| cosine_precision@5  | 0.156      |
| cosine_precision@10 | 0.083      |
| cosine_recall@1     | 0.016      |
| cosine_recall@3     | 0.0204     |
| cosine_recall@5     | 0.0217     |
| cosine_recall@10    | 0.0231     |
| cosine_ndcg@10      | 0.1552     |
| cosine_mrr@10       | 0.6648     |
| **cosine_map@100**  | **0.0186** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 11,863 training samples
* Columns: <code>context</code> and <code>question</code>
* Approximate statistics based on the first 1000 samples:
  |         | context                                                                             | question                                                                          |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 13 tokens</li><li>mean: 40.74 tokens</li><li>max: 277 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 24.4 tokens</li><li>max: 62 tokens</li></ul> |
* Samples:
  | context                                                                                                                                                             | question                                                                                                                                                      |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The engagement with key stakeholders involves various topics and methods throughout the year</code>                                                           | <code>Question: What does the engagement with key stakeholders involve throughout the year?</code>                                                            |
  | <code>For unitholders and analysts, the focus is on business and operations, the release of financial results, and the overall performance and announcements</code> | <code>Question: What is the focus for unitholders and analysts in terms of business and operations, financial results, performance, and announcements?</code> |
  | <code>These are communicated through press releases and other required disclosures via SGXNet and NetLink's website</code>                                          | <code>What platform is used to communicate press releases and required disclosures for NetLink?</code>                                                        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64,
          32
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_32_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|:---------------------:|
| 0.4313     | 10     | 5.0772        | -                      | -                      | -                     | -                      | -                     |
| 0.8625     | 20     | 3.2666        | -                      | -                      | -                     | -                      | -                     |
| 1.0350     | 24     | -             | 0.0221                 | 0.0224                 | 0.0185                | 0.0226                 | 0.0211                |
| 1.2264     | 30     | 3.1157        | -                      | -                      | -                     | -                      | -                     |
| 1.6577     | 40     | 2.585         | -                      | -                      | -                     | -                      | -                     |
| **1.9164** | **46** | **-**         | **0.0223**             | **0.0226**             | **0.0186**            | **0.0228**             | **0.0212**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->