a2c-PandaReachDense-v3 / config.json
Genis
Initial commit
95f2fcc
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x784c922f0ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x784c922e9340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1250000, "_total_timesteps": 1250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691856011622549048, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPK3ZP1X0wD/BNAs/IbmcP7lPuD95dQe/ssmWPj/8NjtyO+g+B1mbP7uivD/AQLM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdkq/P7kZqD80tvs+BVvOP5fMjz8/+vM9mCUtPcUKyj55NAO+nq6eP6s70z/9JJE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA8rdk/VfTAP8E0Cz87FWs/mAJlP1MlmL8huZw/uU+4P3l1B7/3FdI++iJLP5lYG7+yyZY+P/w2O3I76D4ragA/frX+OR3Ryz4HWZs/u6K8P8BAsz+vkZM/ACNhPxgJvj+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.7005992 1.5074564 0.5437737 ]\n [ 1.2243997 1.439933 -0.52913624]\n [ 0.29450756 0.00279213 0.45357853]\n [ 1.2136544 1.4737161 1.4004135 ]]", "desired_goal": "[[ 1.4944599 1.313285 0.49162447]\n [ 1.6121527 1.1234311 0.11912965]\n [ 0.04227218 0.39461342 -0.12812985]\n [ 1.2397039 1.6502584 1.1339413 ]]", "observation": "[[ 1.7005992e+00 1.5074564e+00 5.4377371e-01 9.1829270e-01\n 8.9457083e-01 -1.1886390e+00]\n [ 1.2243997e+00 1.4399329e+00 -5.2913624e-01 4.1032383e-01\n 7.9350245e-01 -6.0682064e-01]\n [ 2.9450756e-01 2.7921346e-03 4.5357853e-01 5.0161999e-01\n 4.8581877e-04 3.9807978e-01]\n [ 1.2136544e+00 1.4737161e+00 1.4004135e+00 1.1528834e+00\n 8.7944031e-01 1.4846525e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqkr1vS2Qqb2Bzq09hM30PeLf2j3IU5E+sgjVvVqyGD4xTn0+mULLPWcPAD6L41c+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11977132 -0.08279452 0.08486653]\n [ 0.11953261 0.10687234 0.28384233]\n [-0.10402049 0.14911786 0.24736859]\n [ 0.09924812 0.12505876 0.21082895]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8N1SwW3z+aMAWyUSwKMAXSUR0Cq6g/SQYDUdX2UKGgGR7+2enQ6ZH/caAdLAmgIR0Cq6bWBz3h5dX2UKGgGR7/Pq+Jxeb/faAdLA2gIR0Cq6nNqpLmIdX2UKGgGR7+Fhb4agmJFaAdLAWgIR0Cq6hRRl6JJdX2UKGgGR7/Ia/ATIvJzaAdLA2gIR0Cq6X0AT7EYdX2UKGgGR7+2Hh0hePaMaAdLAmgIR0Cq6hxQJokBdX2UKGgGR7/Bs3yZrpJPaAdLA2gIR0Cq6oHavicYdX2UKGgGR7/ZSpiqhlDnaAdLBGgIR0Cq6chfa6BidX2UKGgGR7/TzZpSJj2BaAdLA2gIR0Cq6YuqvNeMdX2UKGgGR7+l4gRsdkrgaAdLAWgIR0Cq6cyuQp4KdX2UKGgGR7+2ZtvXK8tgaAdLAmgIR0Cq6ooysS00dX2UKGgGR7/T6ClJpWWAaAdLA2gIR0Cq6isXzlLfdX2UKGgGR7/A9zwMH8jzaAdLAmgIR0Cq6ZOyNXHSdX2UKGgGR7/KvJzT4L1FaAdLA2gIR0Cq6dkX+ERKdX2UKGgGR7+/pJPIn0CjaAdLAmgIR0Cq6ZyDqW1MdX2UKGgGR7/IRmK64Ds/aAdLA2gIR0Cq6plqrR0EdX2UKGgGR7/IAy2x6fJ4aAdLA2gIR0Cq6jqBNEgGdX2UKGgGR7+3fDUExIrfaAdLAmgIR0Cq6eRYJVsDdX2UKGgGR7/QzT4L1EmZaAdLA2gIR0Cq6a0FSsKcdX2UKGgGR7/TxPO6d1+zaAdLA2gIR0Cq6kj6eoUBdX2UKGgGR7+iVt4zJp35aAdLAWgIR0Cq6bG5+YtydX2UKGgGR7/UPxx1gYxdaAdLBGgIR0Cq6qyMUAT7dX2UKGgGR7/UsjFAE+xGaAdLA2gIR0Cq6fNaY/mldX2UKGgGR7+SxNZeRgZ1aAdLAWgIR0Cq6bZydWhidX2UKGgGR7+7R7Z39rGjaAdLAmgIR0Cq6lQb2lEadX2UKGgGR7/A9cry1/lRaAdLAmgIR0Cq6f7dBSk1dX2UKGgGR7/MrpaA4GUwaAdLA2gIR0Cq6rzRx95RdX2UKGgGR7+4BNmDlHSXaAdLAmgIR0Cq6l2/i5uqdX2UKGgGR7/KzEaVD8cdaAdLA2gIR0Cq6cakRBeHdX2UKGgGR7+mAy2x6fJ4aAdLAWgIR0Cq6csj3VTadX2UKGgGR7/Or8zhxYJWaAdLA2gIR0Cq6gv/7zkIdX2UKGgGR7/QxwQ176YWaAdLA2gIR0Cq6su6unuRdX2UKGgGR7/Jp0OmR/3GaAdLA2gIR0Cq6mzxgAp8dX2UKGgGR7+7aFmFrVOLaAdLAmgIR0Cq6dXjU/fPdX2UKGgGR7+7XrdFfAsTaAdLAmgIR0Cq6hcSPEKmdX2UKGgGR7/DIMjNY8uBaAdLAmgIR0Cq6d45cTrWdX2UKGgGR7/ONDMNc4YKaAdLA2gIR0Cq6tkroW56dX2UKGgGR7/Kax5cC5mRaAdLA2gIR0Cq6no4MnZ1dX2UKGgGR7+/PiT+vQnhaAdLAmgIR0Cq6uMF2V3VdX2UKGgGR7++jGkvboKVaAdLAmgIR0Cq6oQLeANHdX2UKGgGR7/Z1og3cYZVaAdLBGgIR0Cq6im/FirldX2UKGgGR7/QJK8L8aXKaAdLBGgIR0Cq6fCnHeabdX2UKGgGR7/D6BRQ79ycaAdLAmgIR0Cq6owrUb1idX2UKGgGR7/PYBeXzDoAaAdLA2gIR0Cq6u+o1k1/dX2UKGgGR7/QbyYoiLVGaAdLA2gIR0Cq6jZOafBfdX2UKGgGR7+35ckdFOO9aAdLAmgIR0Cq6fm8/UvxdX2UKGgGR7++Ldepn6EbaAdLAmgIR0Cq6gOtfXwtdX2UKGgGR7/MOvt+kP+XaAdLA2gIR0Cq6v5UDMePdX2UKGgGR7/YhKUVzp5eaAdLBGgIR0Cq6p+w1R+CdX2UKGgGR7/LUfgaWHDaaAdLA2gIR0Cq6kWDQJHBdX2UKGgGR7+ysIVuaWonaAdLAmgIR0Cq6gx//echdX2UKGgGR7/BeC04R28qaAdLAmgIR0Cq6k1Vo6CEdX2UKGgGR7/SmXPZ7HAAaAdLA2gIR0Cq6qxC6YmcdX2UKGgGR7/Y2MKkVN5/aAdLBGgIR0Cq6xJlJ6IFdX2UKGgGR7/TxBVuJk5IaAdLA2gIR0Cq6hw5FPSEdX2UKGgGR7/QvSMLncL0aAdLA2gIR0Cq6l2ys0YTdX2UKGgGR7/NTodMj/uLaAdLA2gIR0Cq6rx8D0UXdX2UKGgGR7/Q6Mzdk8RuaAdLA2gIR0Cq6x+FDfFadX2UKGgGR7+hGe+VTrE+aAdLAWgIR0Cq6sBsImgKdX2UKGgGR7/JJ8OTaCcxaAdLA2gIR0Cq6iktEofCdX2UKGgGR7+iidrftQbdaAdLAWgIR0Cq6yPMr3CbdX2UKGgGR7/PxzaK1og3aAdLA2gIR0Cq6mo7Njb0dX2UKGgGR7+Zh8YyfthNaAdLAWgIR0Cq6i1k1/DtdX2UKGgGR7+gX668QI2PaAdLAWgIR0Cq6nC9AX2vdX2UKGgGR7+IiosI3R5UaAdLAWgIR0Cq6jPovBacdX2UKGgGR7/Ai22G7BfsaAdLAmgIR0Cq6y6ef7JodX2UKGgGR7/czfJmukk9aAdLBGgIR0Cq6tOR1X/6dX2UKGgGR7/VySFGoaUBaAdLA2gIR0Cq6n0s4DLbdX2UKGgGR7/MkVN5+pfhaAdLA2gIR0Cq6kBltj0+dX2UKGgGR7/TTEit7rs0aAdLA2gIR0Cq6zsYl6Z6dX2UKGgGR7/K1BMSK3uvaAdLA2gIR0Cq6uJSR8txdX2UKGgGR7/CBNEgGKQ8aAdLAmgIR0Cq6ogGSpzcdX2UKGgGR7++pMpPRAryaAdLAmgIR0Cq6ks1sLv1dX2UKGgGR7/QPLgXMyJsaAdLA2gIR0Cq60oEbHZLdX2UKGgGR7+1KAavRqoIaAdLAmgIR0Cq6lOGbkOqdX2UKGgGR7/PL7Gecx0uaAdLA2gIR0Cq6u770nPWdX2UKGgGR7/Op8WsRxtIaAdLA2gIR0Cq6pSqEOAidX2UKGgGR7/GJRfnfVI7aAdLA2gIR0Cq61i5NGmUdX2UKGgGR7/AtJWeYlY2aAdLAmgIR0Cq6vm6f8MvdX2UKGgGR7/CXj2i+L3saAdLAmgIR0Cq6p9a2WpqdX2UKGgGR7/TkCmuTzNEaAdLA2gIR0Cq6mKxLTQWdX2UKGgGR7+S0ngHeJpGaAdLAWgIR0Cq6mbjkuHvdX2UKGgGR7/S7xd6cAinaAdLBGgIR0Cq62ji4rjHdX2UKGgGR7/WLZi/fwZwaAdLBGgIR0Cq6wnanJkodX2UKGgGR7/ZyYXwb2lEaAdLBGgIR0Cq6q+HBUJfdX2UKGgGR7/Rbg0j1PFeaAdLBGgIR0Cq6njN6gM+dX2UKGgGR7/EReTmnwXqaAdLA2gIR0Cq63ePJaJRdX2UKGgGR7/SGgBcRlH0aAdLA2gIR0Cq6r3/o7mudX2UKGgGR7/D37DVH4GmaAdLAmgIR0Cq6oEhRqGldX2UKGgGR7/Ys8xKxs2vaAdLBGgIR0Cq6xy6MBIXdX2UKGgGR7+W4mTkhib2aAdLAWgIR0Cq6sLCvX9SdX2UKGgGR7+1VLi++M6zaAdLAmgIR0Cq64EYO2AodX2UKGgGR7+2lEZzgdfcaAdLAmgIR0Cq6yf3vhIfdX2UKGgGR7+9pvgm7aqTaAdLAmgIR0Cq64s495hSdX2UKGgGR7/ODA8B+4LDaAdLA2gIR0Cq6tHHeaa1dX2UKGgGR7/ZsPatcObzaAdLBGgIR0Cq6pUQTVUddX2UKGgGR7+Y9cKPXCj2aAdLAWgIR0Cq64/UnXumdX2UKGgGR7+2KUFB6a9caAdLAmgIR0Cq6zDXvphXdX2UKGgGR7+mUW2w3YL9aAdLAWgIR0Cq6pmh/RVqdX2UKGgGR7/URAKOT7l8aAdLA2gIR0Cq6t5k9U0fdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62510, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}