File size: 1,729 Bytes
83310dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f358da
 
 
83310dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d42f28
83310dc
 
 
 
 
 
8d42f28
08af66a
3f358da
83310dc
 
 
 
8d42f28
83310dc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_keras_callback
model-index:
- name: eloi-goncalves/handsfree-commands-ner
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# eloi-goncalves/handsfree-commands-ner

This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0016
- Validation Loss: 0.0010
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7647, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.0701     | 0.0060          | 0     |
| 0.0047     | 0.0015          | 1     |
| 0.0016     | 0.0010          | 2     |


### Framework versions

- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1