File size: 1,520 Bytes
53c6bf0
dfa0cd2
 
 
e5f16bd
dfa0cd2
 
 
53c6bf0
 
dfa0cd2
 
53c6bf0
dfa0cd2
53c6bf0
dfa0cd2
 
21b9322
53c6bf0
dfa0cd2
53c6bf0
dfa0cd2
53c6bf0
dfa0cd2
53c6bf0
dfa0cd2
53c6bf0
dfa0cd2
53c6bf0
dfa0cd2
53c6bf0
dfa0cd2
53c6bf0
dfa0cd2
53c6bf0
dfa0cd2
21b9322
 
 
dfa0cd2
21b9322
 
dfa0cd2
 
 
21b9322
 
53c6bf0
dfa0cd2
53c6bf0
21b9322
 
 
 
 
53c6bf0
 
dfa0cd2
53c6bf0
dfa0cd2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: other
tags:
- generated_from_trainer
base_model: facebook/opt-125m
model-index:
- name: opt125_wiki_rlo_k50
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opt125_wiki_rlo_k50

This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8235

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.1416        | 0.8340 | 500  | 2.8959          |
| 2.9988        | 1.6681 | 1000 | 2.8387          |
| 2.8886        | 2.5021 | 1500 | 2.8256          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.2
- Datasets 2.19.1
- Tokenizers 0.19.1