Add model card with metadata
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: mit
|
5 |
+
library_name: mlflow
|
6 |
+
tags:
|
7 |
+
- intent-classification
|
8 |
+
- text-classification
|
9 |
+
- mlflow
|
10 |
+
datasets:
|
11 |
+
- custom
|
12 |
+
metrics:
|
13 |
+
loss: 1.0714781284332275
|
14 |
+
epoch: 2.0
|
15 |
+
model-index:
|
16 |
+
- name: Intent Classification Model
|
17 |
+
results:
|
18 |
+
- task:
|
19 |
+
type: text-classification
|
20 |
+
subtype: intent-classification
|
21 |
+
metrics:
|
22 |
+
- type: loss
|
23 |
+
value: 1.0714781284332275
|
24 |
+
- type: epoch
|
25 |
+
value: 2.0
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
# Intent Classification Model
|
30 |
+
|
31 |
+
This is an intent classification model trained using MLflow and uploaded to the Hugging Face Hub.
|
32 |
+
|
33 |
+
## Model Details
|
34 |
+
|
35 |
+
- **Model Type:** Intent Classification
|
36 |
+
- **Framework:** MLflow
|
37 |
+
- **Run ID:** ebe2ca3ecb634a96bf1ea3f65b2f86b9
|
38 |
+
|
39 |
+
## Training Details
|
40 |
+
|
41 |
+
### Parameters
|
42 |
+
```yaml
|
43 |
+
num_epochs: '2'
|
44 |
+
model_name: distilbert-base-uncased
|
45 |
+
learning_rate: 5e-05
|
46 |
+
early_stopping_patience: None
|
47 |
+
weight_decay: '0.01'
|
48 |
+
batch_size: '32'
|
49 |
+
max_length: '128'
|
50 |
+
num_labels: '3'
|
51 |
+
|
52 |
+
```
|
53 |
+
|
54 |
+
### Metrics
|
55 |
+
```yaml
|
56 |
+
loss: 1.0714781284332275
|
57 |
+
epoch: 2.0
|
58 |
+
|
59 |
+
```
|
60 |
+
|
61 |
+
## Usage
|
62 |
+
|
63 |
+
This model can be used to classify intents in text. It was trained using MLflow and can be loaded using the MLflow model registry.
|
64 |
+
|
65 |
+
### Loading the Model
|
66 |
+
|
67 |
+
```python
|
68 |
+
import mlflow
|
69 |
+
|
70 |
+
# Load the model
|
71 |
+
model = mlflow.pyfunc.load_model("runs:/ebe2ca3ecb634a96bf1ea3f65b2f86b9/intent_model")
|
72 |
+
|
73 |
+
# Make predictions
|
74 |
+
text = "your text here"
|
75 |
+
prediction = model.predict([{"text": text}])
|
76 |
+
```
|
77 |
+
|
78 |
+
## Additional Information
|
79 |
+
|
80 |
+
For more information about using this model or the training process, please refer to the repository documentation.
|