eliotz commited on
Commit
837eb79
·
verified ·
1 Parent(s): c1030a3

Add model card with metadata

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ library_name: mlflow
6
+ tags:
7
+ - intent-classification
8
+ - text-classification
9
+ - mlflow
10
+ datasets:
11
+ - custom
12
+ metrics:
13
+ loss: 1.0714781284332275
14
+ epoch: 2.0
15
+ model-index:
16
+ - name: Intent Classification Model
17
+ results:
18
+ - task:
19
+ type: text-classification
20
+ subtype: intent-classification
21
+ metrics:
22
+ - type: loss
23
+ value: 1.0714781284332275
24
+ - type: epoch
25
+ value: 2.0
26
+
27
+ ---
28
+
29
+ # Intent Classification Model
30
+
31
+ This is an intent classification model trained using MLflow and uploaded to the Hugging Face Hub.
32
+
33
+ ## Model Details
34
+
35
+ - **Model Type:** Intent Classification
36
+ - **Framework:** MLflow
37
+ - **Run ID:** ebe2ca3ecb634a96bf1ea3f65b2f86b9
38
+
39
+ ## Training Details
40
+
41
+ ### Parameters
42
+ ```yaml
43
+ num_epochs: '2'
44
+ model_name: distilbert-base-uncased
45
+ learning_rate: 5e-05
46
+ early_stopping_patience: None
47
+ weight_decay: '0.01'
48
+ batch_size: '32'
49
+ max_length: '128'
50
+ num_labels: '3'
51
+
52
+ ```
53
+
54
+ ### Metrics
55
+ ```yaml
56
+ loss: 1.0714781284332275
57
+ epoch: 2.0
58
+
59
+ ```
60
+
61
+ ## Usage
62
+
63
+ This model can be used to classify intents in text. It was trained using MLflow and can be loaded using the MLflow model registry.
64
+
65
+ ### Loading the Model
66
+
67
+ ```python
68
+ import mlflow
69
+
70
+ # Load the model
71
+ model = mlflow.pyfunc.load_model("runs:/ebe2ca3ecb634a96bf1ea3f65b2f86b9/intent_model")
72
+
73
+ # Make predictions
74
+ text = "your text here"
75
+ prediction = model.predict([{"text": text}])
76
+ ```
77
+
78
+ ## Additional Information
79
+
80
+ For more information about using this model or the training process, please refer to the repository documentation.