File size: 2,150 Bytes
e734256
 
 
9068a65
 
e734256
 
 
 
 
 
 
 
9068a65
 
 
 
 
f43cb71
e734256
 
 
 
 
 
0ba273b
e734256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba273b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4d3e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
tags:
- image-classification
- climate
- biology
base_model: microsoft/resnet-50
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
  example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
  example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
  example_title: Palace
license: apache-2.0
metrics:
- accuracy
- bertscore
pipeline_tag: image-classification
library_name: transformers
---

# Model Trained Using AutoTrain

- Problem type: Image Classification

<!-- ## Validation Metrics
loss: 0.5462027192115784

f1_macro: 0.38996247906197656

f1_micro: 0.737093690248566

f1_weighted: 0.6627689294144399

precision_macro: 0.3467645553924699

precision_micro: 0.737093690248566

precision_weighted: 0.6320379754980795

recall_macro: 0.49719101123595505

recall_micro: 0.737093690248566

recall_weighted: 0.737093690248566

accuracy: 0.737093690248566 -->

# Image Classification Model Results (AutoTrain)

## Validation Metrics

| Metric | Value |
|--------|-------|
| Loss | 0.5462 |
| Accuracy | 0.7371 |

### F1 Scores
| Type | Value |
|------|-------|
| Macro | 0.3900 |
| Micro | 0.7371 |
| Weighted | 0.6628 |

### Precision
| Type | Value |
|------|-------|
| Macro | 0.3468 |
| Micro | 0.7371 |
| Weighted | 0.6320 |

### Recall
| Type | Value |
|------|-------|
| Macro | 0.4972 |
| Micro | 0.7371 |
| Weighted | 0.7371 |


## How to use

This model is designed for image classification. Here's how you can use it:

```python
from transformers import AutoImageProcessor, AutoModelForImageClassification
import torch
from PIL import Image

model_name = "eligapris/v-mdd-2000"
processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)

image = Image.open("path_to_your_image.jpg")
inputs = processor(images=image, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)

logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])