eliept1 commited on
Commit
36da025
·
1 Parent(s): 86df981

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.26 +/- 0.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ce03e589f5e568f2f87f825b2719efb22c93e90ab7403f0f84ebc4868d66309
3
+ size 105297
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c90a0ca9fc0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c90a0cac9c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1693835682016346156,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOsu+vOHjo7xaDek9Q2q/vJpLm71ffeQ9hY7Ou4Le0bw+XUU+bGeaPPqBzbxeOCo+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIHHwuwfwGzzI4o893mW/vfc5nL1/uqE8r/5/vZelkb2MPF0+xCSIPeI4jb2oZ8w7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA6y7684eOjvFoN6T2DjCa/hxjbvnp/bb9Dar+8mkubvV995D3GJxW/Z6I3v38fdL+Fjs67gt7RvD5dRT5E5h2/rJiav655uj5sZ5o8+oHNvF44Kj7mfoq/a4mev55yob+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.02329027 -0.02000612 0.113795 ]\n [-0.0233661 -0.07582779 0.11156725]\n [-0.00630361 -0.0256188 0.1927385 ]\n [ 0.01884814 -0.02508639 0.16623065]]",
34
+ "desired_goal": "[[-0.0073377 0.00951768 0.07025677]\n [-0.09345601 -0.07628243 0.01974225]\n [-0.06249874 -0.07111662 0.21605128]\n [ 0.06647637 -0.06895615 0.00623794]]",
35
+ "observation": "[[-0.02329027 -0.02000612 0.113795 -0.65058154 -0.4279215 -0.9277264 ]\n [-0.0233661 -0.07582779 0.11156725 -0.58263814 -0.7173218 -0.9536056 ]\n [-0.00630361 -0.0256188 0.1927385 -0.6167948 -1.2077842 0.3642096 ]\n [ 0.01884814 -0.02508639 0.16623065 -1.0819976 -1.2385687 -1.2613103 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": null,
42
+ "_episode_num": 0,
43
+ "use_sde": false,
44
+ "sde_sample_freq": -1,
45
+ "_current_progress_remaining": 0.0,
46
+ "_stats_window_size": 100,
47
+ "ep_info_buffer": {
48
+ ":type:": "<class 'collections.deque'>",
49
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9pvIfbKzRiMAWyUSwSMAXSUR0Cl94zND+irdX2UKGgGR7/YJyyUs4DLaAdLBGgIR0Cl90/ZVXFMdX2UKGgGR7/bWdVea8YiaAdLBGgIR0Cl9w2kadc0dX2UKGgGR7+w3juKGcnWaAdLAmgIR0Cl95VloUSJdX2UKGgGR7/JGz8gpz91aAdLA2gIR0Cl994NqgyudX2UKGgGR7/Ck+HJtBOYaAdLAmgIR0Cl9xmjj7yhdX2UKGgGR7/MWJJoTPB0aAdLA2gIR0Cl92DhLoOhdX2UKGgGR7/Ial1r6+FlaAdLA2gIR0Cl96bC79Q5dX2UKGgGR7/OOYplSS/1aAdLA2gIR0Cl9+z+FUQ1dX2UKGgGR7/AZhKDkELZaAdLAmgIR0Cl96+UY8+zdX2UKGgGR7/MjB2wFC9iaAdLA2gIR0Cl926Rp1zRdX2UKGgGR7/XcNpdrwfAaAdLBGgIR0Cl9yyIgvDhdX2UKGgGR7+VzhgmZ3LWaAdLAWgIR0Cl93W43FUAdX2UKGgGR7+4GPgeii7DaAdLAmgIR0Cl9zfL9uP4dX2UKGgGR7/VwA2hqTKUaAdLBGgIR0Cl+AFvIfbLdX2UKGgGR7/QoDPnjhkzaAdLBGgIR0Cl98Pn8sMBdX2UKGgGR7/N2Cdz4k/saAdLA2gIR0Cl94LWiDdydX2UKGgGR7+dIXj2i+L4aAdLAWgIR0Cl98h24d6tdX2UKGgGR7/PtJnQID5kaAdLA2gIR0Cl90UaQ3gldX2UKGgGR7/Ps54nndO7aAdLA2gIR0Cl+BGZNO/MdX2UKGgGR7+/f3vhIe5naAdLAmgIR0Cl947JnxrjdX2UKGgGR7+69QGfPHDKaAdLAmgIR0Cl+BnnlnyvdX2UKGgGR7/Qu6VdHDrJaAdLA2gIR0Cl99hWPtD2dX2UKGgGR7/AOtGNJe3QaAdLAmgIR0Cl95c63iJgdX2UKGgGR7/KHP/rB0p3aAdLA2gIR0Cl91VanrIHdX2UKGgGR7+c7dSEUTL4aAdLAWgIR0Cl95vQv6CUdX2UKGgGR7/SF4cFQl8gaAdLA2gIR0Cl+CnIZIhAdX2UKGgGR7/SVDa4+bExaAdLA2gIR0Cl9+hacI7edX2UKGgGR7/NKCg9Net0aAdLA2gIR0Cl96tIK+i8dX2UKGgGR7/eqT8pCrtFaAdLBGgIR0Cl92kAHVwxdX2UKGgGR7/CLEUCaJAMaAdLAmgIR0Cl+DKt5le4dX2UKGgGR7++xu89Oh0yaAdLAmgIR0Cl9/D+aScLdX2UKGgGR7/DC79Q40djaAdLAmgIR0Cl97P3SKFadX2UKGgGR7/R5Etuk1uSaAdLA2gIR0Cl93XaBZp0dX2UKGgGR7/FL127nPmgaAdLA2gIR0Cl+EJQ+EAYdX2UKGgGR7+zbmEGqxTsaAdLAmgIR0Cl97++/QBxdX2UKGgGR7/YDIBBAv+PaAdLBGgIR0Cl+AVTR6WxdX2UKGgGR7+6RaHKwIMSaAdLAmgIR0Cl94HZsbeedX2UKGgGR7/BKHwgDA8CaAdLAmgIR0Cl98hoM8YAdX2UKGgGR7/Q+98JD3M7aAdLA2gIR0Cl+E+mvW6LdX2UKGgGR7++9Zid8RcvaAdLAmgIR0Cl+Fm0mdAgdX2UKGgGR7/VPnB+F10UaAdLBGgIR0Cl+BgZsKsudX2UKGgGR7/Yv1lGwzLwaAdLBGgIR0Cl95SO7xusdX2UKGgGR7+nW+XZ5AyEaAdLAWgIR0Cl+F5FocrBdX2UKGgGR7+0lNUOuq3maAdLAmgIR0Cl95029+PSdX2UKGgGR7/MCaJAMUh3aAdLA2gIR0Cl+CUelsP8dX2UKGgGR7/g6dUbT+efaAdLBmgIR0Cl9+QkX1rZdX2UKGgGR7/ME/0NBnjAaAdLA2gIR0Cl+GuHFglXdX2UKGgGR7/CxjawljVhaAdLAmgIR0Cl+DBfKISEdX2UKGgGR7/F5KODJ2dNaAdLA2gIR0Cl9/OndfsvdX2UKGgGR7+aYZ2pyZKGaAdLAWgIR0Cl9/fb0voNdX2UKGgGR7/VCHARChN/aAdLBWgIR0Cl97XGff4zdX2UKGgGR7/YBHTZxrBTaAdLBGgIR0Cl+H/Aj6eodX2UKGgGR7/IhQm/nGKiaAdLA2gIR0Cl+AehPCVKdX2UKGgGR7+msijcmBvraAdLAWgIR0Cl+AubZvkzdX2UKGgGR7/WrzoUzsQeaAdLBGgIR0Cl98lEiMYNdX2UKGgGR7/YdAgPmPo3aAdLBGgIR0Cl+JL8BMi9dX2UKGgGR7/jkug6EJ0GaAdLCGgIR0Cl+FV6/qPfdX2UKGgGR7+/qAz544ZNaAdLAmgIR0Cl99IAn2IwdX2UKGgGR7/OPGyX2M86aAdLA2gIR0Cl+KJJwsGxdX2UKGgGR7/ZjG1hLGrCaAdLBGgIR0Cl+B+Zw4sFdX2UKGgGR7/AyrPt2LYPaAdLAmgIR0Cl992e6I3zdX2UKGgGR7/NlxwQ176YaAdLA2gIR0Cl+GWL5ylvdX2UKGgGR7+weRxLkCFLaAdLAmgIR0Cl+Kt8uzyCdX2UKGgGR7+zMMZxaPjoaAdLAmgIR0Cl9+YvexfOdX2UKGgGR7/DmMfigkC4aAdLAmgIR0Cl+G4DDCP7dX2UKGgGR7/LIKc/dIoWaAdLA2gIR0Cl+Cz6ab4KdX2UKGgGR7/A29+PRzBAaAdLAmgIR0Cl9+6B7NSqdX2UKGgGR7+zt3OfNA1OaAdLAmgIR0Cl+Dd2HLzPdX2UKGgGR7/aa5f+jua4aAdLBGgIR0Cl+L6ciGFjdX2UKGgGR7/SxYq5LAYYaAdLA2gIR0Cl+Hzu4PPLdX2UKGgGR7/RC9RJmNBGaAdLA2gIR0Cl9/2Kl54XdX2UKGgGR7/KgAZKnNxEaAdLA2gIR0Cl+IlH8TBZdX2UKGgGR7/VJvo/zJ6qaAdLBGgIR0Cl+Eg4GUwBdX2UKGgGR7/XDrJKaoddaAdLBGgIR0Cl+NHWz4UOdX2UKGgGR7/QdilSCOFQaAdLA2gIR0Cl+Ax7AtWddX2UKGgGR7+0daMaS9uhaAdLAmgIR0Cl+JR6F/QTdX2UKGgGR7+3sdDIBBAwaAdLAmgIR0Cl+FN7a7EpdX2UKGgGR7/CcriEQGwBaAdLAmgIR0Cl+NrW7OE/dX2UKGgGR7/L/bTMJQchaAdLA2gIR0Cl+GBeXzDodX2UKGgGR7/N5Sm65Gz9aAdLBGgIR0Cl+B4QBgeBdX2UKGgGR7/Slu3trsSkaAdLA2gIR0Cl+OpK8L8adX2UKGgGR7/aldkauOjqaAdLBGgIR0Cl+KjlYEGJdX2UKGgGR7+zgn+hoM8YaAdLAmgIR0Cl+LE2xY7rdX2UKGgGR7/cU3GXHBDYaAdLBGgIR0Cl+HQlruYydX2UKGgGR7/gJcxCY1HfaAdLBGgIR0Cl+Puf/WDpdX2UKGgGR7/gvzOHFglXaAdLBmgIR0Cl+D4DLbHqdX2UKGgGR7/Y6AOJ+DvmaAdLBGgIR0Cl+MYuK4x2dX2UKGgGR7/SmBOHnEEUaAdLA2gIR0Cl+IVDSgGsdX2UKGgGR7/Niz9jwx33aAdLA2gIR0Cl+QycCo0idX2UKGgGR7+j9MsYl6Z6aAdLAWgIR0Cl+MsSkCV9dX2UKGgGR7+/IHTqjaf0aAdLAmgIR0Cl+RVE/jbSdX2UKGgGR7/TCSidrftQaAdLA2gIR0Cl+JJ35eqrdX2UKGgGR7/WWwu/UONHaAdLBGgIR0Cl+FBQWN3odX2UKGgGR7/U3Kji4rjHaAdLA2gIR0Cl+NrE9+w1dX2UKGgGR7+gNd7fHggpaAdLAWgIR0Cl+Fda+vhZdX2UKGgGR7/H40uUUwi8aAdLA2gIR0Cl+SVwo9cKdX2UKGgGR7/A1uR9w3o+aAdLAmgIR0Cl+OPphWo4dX2UKGgGR7/ajkdV/+bWaAdLBGgIR0Cl+Ks8gZCOdX2UKGgGR7/PSMLncL0BaAdLA2gIR0Cl+GoAwPAgdWUu"
50
+ },
51
+ "ep_success_buffer": {
52
+ ":type:": "<class 'collections.deque'>",
53
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
54
+ },
55
+ "_n_updates": 50000,
56
+ "observation_space": {
57
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
58
+ ":serialized:": "gAWVqgMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoGyiWAwAAAAAAAAABAQGUaB9LA4WUaCN0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgbKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoI3SUUpSMBGhpZ2iUaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFWgYaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgmaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgrSwOFlGgtaBsolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgVSwOFlGgjdJRSlGgyaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlGg3jAUtMTAuMJRoOYwEMTAuMJRoO051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCZoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCtLBoWUaC1oGyiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCN0lFKUaDJoGyiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCN0lFKUaDeMBS0xMC4wlGg5jAQxMC4wlGg7TnVidWgrTmgQTmg7TnViLg==",
59
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
60
+ "_shape": null,
61
+ "dtype": null,
62
+ "_np_random": null
63
+ },
64
+ "action_space": {
65
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
66
+ ":serialized:": "gAWVlwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgUSwOFlGgYdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoECiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUaBh0lFKUjARoaWdolGgQKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoCksDhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
67
+ "dtype": "float32",
68
+ "bounded_below": "[ True True True]",
69
+ "bounded_above": "[ True True True]",
70
+ "_shape": [
71
+ 3
72
+ ],
73
+ "low": "[-1. -1. -1.]",
74
+ "high": "[1. 1. 1.]",
75
+ "low_repr": "-1.0",
76
+ "high_repr": "1.0",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 4,
80
+ "n_steps": 5,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 1.0,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "normalize_advantage": false,
87
+ "lr_schedule": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ }
91
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e86f70b10670f0edf3146bf2d863362074d3228d7083f199fae6ce1932e3d2ee
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6915625d7b7046b90f85d505bbbbe7ce43d9b56fcdb8bddab31164508b9a29f8
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c90a0ca9fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c90a0cac9c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693835682016346156, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOsu+vOHjo7xaDek9Q2q/vJpLm71ffeQ9hY7Ou4Le0bw+XUU+bGeaPPqBzbxeOCo+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIHHwuwfwGzzI4o893mW/vfc5nL1/uqE8r/5/vZelkb2MPF0+xCSIPeI4jb2oZ8w7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA6y7684eOjvFoN6T2DjCa/hxjbvnp/bb9Dar+8mkubvV995D3GJxW/Z6I3v38fdL+Fjs67gt7RvD5dRT5E5h2/rJiav655uj5sZ5o8+oHNvF44Kj7mfoq/a4mev55yob+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.02329027 -0.02000612 0.113795 ]\n [-0.0233661 -0.07582779 0.11156725]\n [-0.00630361 -0.0256188 0.1927385 ]\n [ 0.01884814 -0.02508639 0.16623065]]", "desired_goal": "[[-0.0073377 0.00951768 0.07025677]\n [-0.09345601 -0.07628243 0.01974225]\n [-0.06249874 -0.07111662 0.21605128]\n [ 0.06647637 -0.06895615 0.00623794]]", "observation": "[[-0.02329027 -0.02000612 0.113795 -0.65058154 -0.4279215 -0.9277264 ]\n [-0.0233661 -0.07582779 0.11156725 -0.58263814 -0.7173218 -0.9536056 ]\n [-0.00630361 -0.0256188 0.1927385 -0.6167948 -1.2077842 0.3642096 ]\n [ 0.01884814 -0.02508639 0.16623065 -1.0819976 -1.2385687 -1.2613103 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9pvIfbKzRiMAWyUSwSMAXSUR0Cl94zND+irdX2UKGgGR7/YJyyUs4DLaAdLBGgIR0Cl90/ZVXFMdX2UKGgGR7/bWdVea8YiaAdLBGgIR0Cl9w2kadc0dX2UKGgGR7+w3juKGcnWaAdLAmgIR0Cl95VloUSJdX2UKGgGR7/JGz8gpz91aAdLA2gIR0Cl994NqgyudX2UKGgGR7/Ck+HJtBOYaAdLAmgIR0Cl9xmjj7yhdX2UKGgGR7/MWJJoTPB0aAdLA2gIR0Cl92DhLoOhdX2UKGgGR7/Ial1r6+FlaAdLA2gIR0Cl96bC79Q5dX2UKGgGR7/OOYplSS/1aAdLA2gIR0Cl9+z+FUQ1dX2UKGgGR7/AZhKDkELZaAdLAmgIR0Cl96+UY8+zdX2UKGgGR7/MjB2wFC9iaAdLA2gIR0Cl926Rp1zRdX2UKGgGR7/XcNpdrwfAaAdLBGgIR0Cl9yyIgvDhdX2UKGgGR7+VzhgmZ3LWaAdLAWgIR0Cl93W43FUAdX2UKGgGR7+4GPgeii7DaAdLAmgIR0Cl9zfL9uP4dX2UKGgGR7/VwA2hqTKUaAdLBGgIR0Cl+AFvIfbLdX2UKGgGR7/QoDPnjhkzaAdLBGgIR0Cl98Pn8sMBdX2UKGgGR7/N2Cdz4k/saAdLA2gIR0Cl94LWiDdydX2UKGgGR7+dIXj2i+L4aAdLAWgIR0Cl98h24d6tdX2UKGgGR7/PtJnQID5kaAdLA2gIR0Cl90UaQ3gldX2UKGgGR7/Ps54nndO7aAdLA2gIR0Cl+BGZNO/MdX2UKGgGR7+/f3vhIe5naAdLAmgIR0Cl947JnxrjdX2UKGgGR7+69QGfPHDKaAdLAmgIR0Cl+BnnlnyvdX2UKGgGR7/Qu6VdHDrJaAdLA2gIR0Cl99hWPtD2dX2UKGgGR7/AOtGNJe3QaAdLAmgIR0Cl95c63iJgdX2UKGgGR7/KHP/rB0p3aAdLA2gIR0Cl91VanrIHdX2UKGgGR7+c7dSEUTL4aAdLAWgIR0Cl95vQv6CUdX2UKGgGR7/SF4cFQl8gaAdLA2gIR0Cl+CnIZIhAdX2UKGgGR7/SVDa4+bExaAdLA2gIR0Cl9+hacI7edX2UKGgGR7/NKCg9Net0aAdLA2gIR0Cl96tIK+i8dX2UKGgGR7/eqT8pCrtFaAdLBGgIR0Cl92kAHVwxdX2UKGgGR7/CLEUCaJAMaAdLAmgIR0Cl+DKt5le4dX2UKGgGR7++xu89Oh0yaAdLAmgIR0Cl9/D+aScLdX2UKGgGR7/DC79Q40djaAdLAmgIR0Cl97P3SKFadX2UKGgGR7/R5Etuk1uSaAdLA2gIR0Cl93XaBZp0dX2UKGgGR7/FL127nPmgaAdLA2gIR0Cl+EJQ+EAYdX2UKGgGR7+zbmEGqxTsaAdLAmgIR0Cl97++/QBxdX2UKGgGR7/YDIBBAv+PaAdLBGgIR0Cl+AVTR6WxdX2UKGgGR7+6RaHKwIMSaAdLAmgIR0Cl94HZsbeedX2UKGgGR7/BKHwgDA8CaAdLAmgIR0Cl98hoM8YAdX2UKGgGR7/Q+98JD3M7aAdLA2gIR0Cl+E+mvW6LdX2UKGgGR7++9Zid8RcvaAdLAmgIR0Cl+Fm0mdAgdX2UKGgGR7/VPnB+F10UaAdLBGgIR0Cl+BgZsKsudX2UKGgGR7/Yv1lGwzLwaAdLBGgIR0Cl95SO7xusdX2UKGgGR7+nW+XZ5AyEaAdLAWgIR0Cl+F5FocrBdX2UKGgGR7+0lNUOuq3maAdLAmgIR0Cl95029+PSdX2UKGgGR7/MCaJAMUh3aAdLA2gIR0Cl+CUelsP8dX2UKGgGR7/g6dUbT+efaAdLBmgIR0Cl9+QkX1rZdX2UKGgGR7/ME/0NBnjAaAdLA2gIR0Cl+GuHFglXdX2UKGgGR7/CxjawljVhaAdLAmgIR0Cl+DBfKISEdX2UKGgGR7/F5KODJ2dNaAdLA2gIR0Cl9/OndfsvdX2UKGgGR7+aYZ2pyZKGaAdLAWgIR0Cl9/fb0voNdX2UKGgGR7/VCHARChN/aAdLBWgIR0Cl97XGff4zdX2UKGgGR7/YBHTZxrBTaAdLBGgIR0Cl+H/Aj6eodX2UKGgGR7/IhQm/nGKiaAdLA2gIR0Cl+AehPCVKdX2UKGgGR7+msijcmBvraAdLAWgIR0Cl+AubZvkzdX2UKGgGR7/WrzoUzsQeaAdLBGgIR0Cl98lEiMYNdX2UKGgGR7/YdAgPmPo3aAdLBGgIR0Cl+JL8BMi9dX2UKGgGR7/jkug6EJ0GaAdLCGgIR0Cl+FV6/qPfdX2UKGgGR7+/qAz544ZNaAdLAmgIR0Cl99IAn2IwdX2UKGgGR7/OPGyX2M86aAdLA2gIR0Cl+KJJwsGxdX2UKGgGR7/ZjG1hLGrCaAdLBGgIR0Cl+B+Zw4sFdX2UKGgGR7/AyrPt2LYPaAdLAmgIR0Cl992e6I3zdX2UKGgGR7/NlxwQ176YaAdLA2gIR0Cl+GWL5ylvdX2UKGgGR7+weRxLkCFLaAdLAmgIR0Cl+Kt8uzyCdX2UKGgGR7+zMMZxaPjoaAdLAmgIR0Cl9+YvexfOdX2UKGgGR7/DmMfigkC4aAdLAmgIR0Cl+G4DDCP7dX2UKGgGR7/LIKc/dIoWaAdLA2gIR0Cl+Cz6ab4KdX2UKGgGR7/A29+PRzBAaAdLAmgIR0Cl9+6B7NSqdX2UKGgGR7+zt3OfNA1OaAdLAmgIR0Cl+Dd2HLzPdX2UKGgGR7/aa5f+jua4aAdLBGgIR0Cl+L6ciGFjdX2UKGgGR7/SxYq5LAYYaAdLA2gIR0Cl+Hzu4PPLdX2UKGgGR7/RC9RJmNBGaAdLA2gIR0Cl9/2Kl54XdX2UKGgGR7/KgAZKnNxEaAdLA2gIR0Cl+IlH8TBZdX2UKGgGR7/VJvo/zJ6qaAdLBGgIR0Cl+Eg4GUwBdX2UKGgGR7/XDrJKaoddaAdLBGgIR0Cl+NHWz4UOdX2UKGgGR7/QdilSCOFQaAdLA2gIR0Cl+Ax7AtWddX2UKGgGR7+0daMaS9uhaAdLAmgIR0Cl+JR6F/QTdX2UKGgGR7+3sdDIBBAwaAdLAmgIR0Cl+FN7a7EpdX2UKGgGR7/CcriEQGwBaAdLAmgIR0Cl+NrW7OE/dX2UKGgGR7/L/bTMJQchaAdLA2gIR0Cl+GBeXzDodX2UKGgGR7/N5Sm65Gz9aAdLBGgIR0Cl+B4QBgeBdX2UKGgGR7/Slu3trsSkaAdLA2gIR0Cl+OpK8L8adX2UKGgGR7/aldkauOjqaAdLBGgIR0Cl+KjlYEGJdX2UKGgGR7+zgn+hoM8YaAdLAmgIR0Cl+LE2xY7rdX2UKGgGR7/cU3GXHBDYaAdLBGgIR0Cl+HQlruYydX2UKGgGR7/gJcxCY1HfaAdLBGgIR0Cl+Puf/WDpdX2UKGgGR7/gvzOHFglXaAdLBmgIR0Cl+D4DLbHqdX2UKGgGR7/Y6AOJ+DvmaAdLBGgIR0Cl+MYuK4x2dX2UKGgGR7/SmBOHnEEUaAdLA2gIR0Cl+IVDSgGsdX2UKGgGR7/Niz9jwx33aAdLA2gIR0Cl+QycCo0idX2UKGgGR7+j9MsYl6Z6aAdLAWgIR0Cl+MsSkCV9dX2UKGgGR7+/IHTqjaf0aAdLAmgIR0Cl+RVE/jbSdX2UKGgGR7/TCSidrftQaAdLA2gIR0Cl+JJ35eqrdX2UKGgGR7/WWwu/UONHaAdLBGgIR0Cl+FBQWN3odX2UKGgGR7/U3Kji4rjHaAdLA2gIR0Cl+NrE9+w1dX2UKGgGR7+gNd7fHggpaAdLAWgIR0Cl+Fda+vhZdX2UKGgGR7/H40uUUwi8aAdLA2gIR0Cl+SVwo9cKdX2UKGgGR7/A1uR9w3o+aAdLAmgIR0Cl+OPphWo4dX2UKGgGR7/ajkdV/+bWaAdLBGgIR0Cl+Ks8gZCOdX2UKGgGR7/PSMLncL0BaAdLA2gIR0Cl+GoAwPAgdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVqgMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoGyiWAwAAAAAAAAABAQGUaB9LA4WUaCN0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgbKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoI3SUUpSMBGhpZ2iUaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFWgYaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgmaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgrSwOFlGgtaBsolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgVSwOFlGgjdJRSlGgyaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlGg3jAUtMTAuMJRoOYwEMTAuMJRoO051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCZoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCtLBoWUaC1oGyiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCN0lFKUaDJoGyiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCN0lFKUaDeMBS0xMC4wlGg5jAQxMC4wlGg7TnVidWgrTmgQTmg7TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgUSwOFlGgYdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoECiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUaBh0lFKUjARoaWdolGgQKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoCksDhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (711 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.26298280749469993, "std_reward": 0.06305201186861428, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-04T14:42:15.270788"}