elfray commited on
Commit
685393f
·
1 Parent(s): 90af410

Upload PPO LunarLander-v2 trained agent (2000000 steps)

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 274.34 +/- 16.12
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6142fed0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6142fed170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6142fed200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6142fed290>", "_build": "<function ActorCriticPolicy._build at 0x7f6142fed320>", "forward": "<function ActorCriticPolicy.forward at 0x7f6142fed3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6142fed440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6142fed4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6142fed560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6142fed5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6142fed680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f614303f510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652781175.0434828, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMVNT24PIW72FzlustbuTyGFsU8WbucvQAAgD8AAIA/AIWRPHuWsrpdW2+4MV5ps9i//bmVxog3AACAPwAAgD8zOYS9G0rBPibvPD6eu8i+KbWSPV4lk7wAAAAAAAAAAC0yHL4VYVM/paLNOKtsw75gDlu+K+TsPQAAAAAAAAAABpkxPpAjUz+WzQ6+pH/1vn3vQT77Wj++AAAAAAAAAABzA9S9pkT9PipAxD48/qe+wO68PXQZkz0AAAAAAAAAADOEKj5R7ug+xKPHvlYJ5r7CKZw9im1wvgAAAAAAAAAAZhQXvNwgoT+Oa1K9vmr5vtwCIb3wZb+8AAAAAAAAAACNwP09Yu9GP5UbZL0KL/2+ODkKPgaj370AAAAAAAAAAA3ei70fZq8/cUApvpsj6r7tuhK+EqMXvQAAAAAAAAAA5sEwPUDW/z7Y6i292gPMvhquGj2uL5Q8AAAAAAAAAAAAA688FOidusgPTTnCNmQ0iO9fOurva7gAAIA/AACAP/P2dz6ttKI+IHzKvlrGxr77MXY9UZyPvgAAAAAAAAAAMwfgO1LhrD9i4zc9PuS6vmhErjsK1Ag8AAAAAAAAAACzb0E9cojhPsrt+r1z+NO+dXaeO/dVAr0AAAAAAAAAAM23s710R7s/mzgfv9xWnDyTuy29jmyHvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhBCQL2FXckCUhpRSlIwBbJRL14wBdJRHQKTQkmUnogV1fZQoaAZoCWgPQwhtVKcDGb9wQJSGlFKUaBVL4mgWR0Ck0QmN70FsdX2UKGgGaAloD0MIONvcmJ5nckCUhpRSlGgVS81oFkdApNEY2n8893V9lChoBmgJaA9DCH+mXrdIFXNAlIaUUpRoFUv7aBZHQKTRXRceKbd1fZQoaAZoCWgPQwhqwYu+gupxQJSGlFKUaBVL6GgWR0Ck0YU0WM0hdX2UKGgGaAloD0MIjX40nLJVbkCUhpRSlGgVS+VoFkdApNHSKrJbMXV9lChoBmgJaA9DCG8MAcAxkXFAlIaUUpRoFUvXaBZHQKTR74FA3UB1fZQoaAZoCWgPQwioGVJF8aNzQJSGlFKUaBVL8WgWR0Ck0fGZmZmadX2UKGgGaAloD0MIYJD0aRWWbkCUhpRSlGgVTQcBaBZHQKTSYGM4tHx1fZQoaAZoCWgPQwi/nUSE/89xQJSGlFKUaBVL1WgWR0Ck0vCsGPgfdX2UKGgGaAloD0MI74/3qtUWcECUhpRSlGgVS/toFkdApNMQHHFPznV9lChoBmgJaA9DCP1nzY8/HXFAlIaUUpRoFU32AmgWR0Ck01CBXjlxdX2UKGgGaAloD0MIR1UTRB2PcUCUhpRSlGgVS/toFkdApNN/c580DXV9lChoBmgJaA9DCL0Yyon2ZnBAlIaUUpRoFUvxaBZHQKTURTWoWHl1fZQoaAZoCWgPQwj6X65FS5VwQJSGlFKUaBVL8mgWR0Ck1NutGNJfdX2UKGgGaAloD0MIfJkoQuqsb0CUhpRSlGgVS/JoFkdApNTiay8jA3V9lChoBmgJaA9DCHpQUIqWcXFAlIaUUpRoFUv2aBZHQKTVa15Sm651fZQoaAZoCWgPQwiRfCWQkkVwQJSGlFKUaBVL6GgWR0Ck1Xr6+FlDdX2UKGgGaAloD0MIK78MxkhscUCUhpRSlGgVS/poFkdApNWOQuEmIHV9lChoBmgJaA9DCHU8ZqCy6HFAlIaUUpRoFUvoaBZHQKTVoFlkH2R1fZQoaAZoCWgPQwgaNPRPMCxxQJSGlFKUaBVL6WgWR0Ck1e9cSoOydX2UKGgGaAloD0MIIqmFkoljcUCUhpRSlGgVS+RoFkdApNX6eTV2BHV9lChoBmgJaA9DCObqxyb5IXNAlIaUUpRoFUvwaBZHQKTWKEeQuEp1fZQoaAZoCWgPQwiTjnIwm1xzQJSGlFKUaBVL5GgWR0Ck1mbqIJqqdX2UKGgGaAloD0MIHCYapOChckCUhpRSlGgVS+FoFkdApNbhnL7oCHV9lChoBmgJaA9DCOnTKvrDz3BAlIaUUpRoFUvRaBZHQKTXMbvPTod1fZQoaAZoCWgPQwgAdJgvL8xwQJSGlFKUaBVL5GgWR0Ck11QEIPbxdX2UKGgGaAloD0MIsYaL3NOjcUCUhpRSlGgVS/poFkdApNd3QfIS13V9lChoBmgJaA9DCDfhXpl3DXFAlIaUUpRoFUvkaBZHQKToPkxREWt1fZQoaAZoCWgPQwgc0qjASe9uQJSGlFKUaBVL32gWR0Ck6LwhGH58dX2UKGgGaAloD0MIQkC+hIofY0CUhpRSlGgVTegDaBZHQKToz+kxh2J1fZQoaAZoCWgPQwg2k2+2uc9yQJSGlFKUaBVLx2gWR0Ck6OEHD766dX2UKGgGaAloD0MIGXPXErKUcUCUhpRSlGgVS/loFkdApOktyaNMoXV9lChoBmgJaA9DCE4LXvSVCW9AlIaUUpRoFUviaBZHQKTpSqABkqd1fZQoaAZoCWgPQwgm++dpwPhwQJSGlFKUaBVL2GgWR0Ck6VNSQ5mzdX2UKGgGaAloD0MISpUoe0s+c0CUhpRSlGgVS/VoFkdApOm7rNW2gHV9lChoBmgJaA9DCGGJB5RN/W5AlIaUUpRoFUvdaBZHQKTpwJHiFTN1fZQoaAZoCWgPQwjjx5i7FuxtQJSGlFKUaBVL5mgWR0Ck6hH6MzdldX2UKGgGaAloD0MIlIlbBXFGc0CUhpRSlGgVS/VoFkdApOoXNA1NxnV9lChoBmgJaA9DCGssYW0ME3BAlIaUUpRoFUveaBZHQKTqLkWAPNF1fZQoaAZoCWgPQwjwUX+9gnhzQJSGlFKUaBVL12gWR0Ck6r1E/jbSdX2UKGgGaAloD0MIyLQ2jW1tcUCUhpRSlGgVS/NoFkdApOru6VdHD3V9lChoBmgJaA9DCIsXC0NkfXFAlIaUUpRoFUvtaBZHQKTrNgNPP9l1fZQoaAZoCWgPQwi3tYXnZe5yQJSGlFKUaBVL5mgWR0Ck6zkOI68ydX2UKGgGaAloD0MIlgZ+VMPZbkCUhpRSlGgVS+BoFkdApOvixmkFfXV9lChoBmgJaA9DCHk/br88JnNAlIaUUpRoFUvWaBZHQKTsSC4jKPp1fZQoaAZoCWgPQwjW5v9VR+tuQJSGlFKUaBVL5WgWR0Ck7Gg3Lmp3dX2UKGgGaAloD0MIV1uxvywCc0CUhpRSlGgVS+hoFkdApOyFAzHjqHV9lChoBmgJaA9DCHcTfNM0dXFAlIaUUpRoFUvTaBZHQKTsqDpTuOV1fZQoaAZoCWgPQwhnYyXmWSJzQJSGlFKUaBVL32gWR0Ck7NP/R3NcdX2UKGgGaAloD0MIyLd3DTpacECUhpRSlGgVS+BoFkdApO1CsCDEnHV9lChoBmgJaA9DCBiT/l6KcnJAlIaUUpRoFUvlaBZHQKTtXF2FFlV1fZQoaAZoCWgPQwhIFcWrrIVyQJSGlFKUaBVNCAFoFkdApO1hxPwd83V9lChoBmgJaA9DCFbWNsVjV3BAlIaUUpRoFUvaaBZHQKTtov0RODd1fZQoaAZoCWgPQwieeqTBbR9wQJSGlFKUaBVL7mgWR0Ck7dcuJ1q4dX2UKGgGaAloD0MItiv0wTLNckCUhpRSlGgVS/5oFkdApO4XrY5DJHV9lChoBmgJaA9DCNmxEYgXd3JAlIaUUpRoFUvgaBZHQKTufq/M4cZ1fZQoaAZoCWgPQwjAJJUppjtxQJSGlFKUaBVL8GgWR0Ck7pKveP7vdX2UKGgGaAloD0MIPbt868PiS0CUhpRSlGgVS4xoFkdApO6hCBwuNHV9lChoBmgJaA9DCKlnQSgvOnJAlIaUUpRoFUvbaBZHQKTutqD9Oyp1fZQoaAZoCWgPQwjcLjTXaUNwQJSGlFKUaBVL9WgWR0Ck7xu+IuXedX2UKGgGaAloD0MITkF+NjKScECUhpRSlGgVS+VoFkdApO+KxZ+x4nV9lChoBmgJaA9DCIF38ukxmm9AlIaUUpRoFUvTaBZHQKTwAUSIxg11fZQoaAZoCWgPQwh72AsFrOFyQJSGlFKUaBVL9GgWR0Ck8Cpx3mmtdX2UKGgGaAloD0MIVYZxNwgscUCUhpRSlGgVS+poFkdApPA7YqXnhnV9lChoBmgJaA9DCFZETfS5EnNAlIaUUpRoFUvQaBZHQKTwolsxfv51fZQoaAZoCWgPQwiBfAkVXKVyQJSGlFKUaBVL/2gWR0Ck8NqODJ2ddX2UKGgGaAloD0MI8zrikM2wc0CUhpRSlGgVS+BoFkdApPDqGvfTC3V9lChoBmgJaA9DCOlF7X4VX3FAlIaUUpRoFUvraBZHQKTw/KJ2t+11fZQoaAZoCWgPQwjHuyNjtchwQJSGlFKUaBVL3GgWR0Ck8RsnAqNIdX2UKGgGaAloD0MIVpxqLYy+cECUhpRSlGgVS9NoFkdApPEp7LMcInV9lChoBmgJaA9DCEz75v7qiW5AlIaUUpRoFUvgaBZHQKTxn2YfGMp1fZQoaAZoCWgPQwh2Tx4WKjpxQJSGlFKUaBVL4mgWR0Ck8hHv2GqQdX2UKGgGaAloD0MICryTT8/6cECUhpRSlGgVS+hoFkdApPI9b9qDb3V9lChoBmgJaA9DCEvqBDQRC3NAlIaUUpRoFUvraBZHQKTyV0xM3611fZQoaAZoCWgPQwipvB3hNF9xQJSGlFKUaBVL8WgWR0Ck8oLupjtpdX2UKGgGaAloD0MI2ZYBZymocECUhpRSlGgVS+9oFkdApPLmm1pj+nV9lChoBmgJaA9DCAIqHEEqTHNAlIaUUpRoFUvYaBZHQKTy8iItUXJ1fZQoaAZoCWgPQwjnwkgv6rBwQJSGlFKUaBVL0mgWR0Ck85CPZIxydX2UKGgGaAloD0MIhxQDJBo+cECUhpRSlGgVS+hoFkdApPOzeEZiu3V9lChoBmgJaA9DCJZZhGIrWHNAlIaUUpRoFUvgaBZHQKTzvq1w5vN1fZQoaAZoCWgPQwi7YHDNnYpxQJSGlFKUaBVL12gWR0Ck9Baa1Cw9dX2UKGgGaAloD0MIzaylgPTOckCUhpRSlGgVS+FoFkdApPR6jcmBv3V9lChoBmgJaA9DCLrZHyi3rW9AlIaUUpRoFUvgaBZHQKT0yzl90A91fZQoaAZoCWgPQwjwiuB/q3luQJSGlFKUaBVL7mgWR0Ck9MYI8hcJdX2UKGgGaAloD0MI0CnIz0YocECUhpRSlGgVS+VoFkdApPTSPjn3c3V9lChoBmgJaA9DCC/f+rDeyXFAlIaUUpRoFUvqaBZHQKT1dWvr4WV1fZQoaAZoCWgPQwiT4Xg+w/lwQJSGlFKUaBVLy2gWR0Ck9fKz7di2dX2UKGgGaAloD0MI628JwL/Tb0CUhpRSlGgVS+xoFkdApPY7jrAxjHV9lChoBmgJaA9DCPdzCvJzmXBAlIaUUpRoFUvwaBZHQKT2bLkCFK11fZQoaAZoCWgPQwj19ueiYQZyQJSGlFKUaBVNVgFoFkdApPax9uxbCHV9lChoBmgJaA9DCI5Yi09BDHFAlIaUUpRoFUvcaBZHQKT2wyBTXJ51fZQoaAZoCWgPQwgw1jcweaFzQJSGlFKUaBVNHAFoFkdApPblfeDWb3V9lChoBmgJaA9DCDsZHCWvQW5AlIaUUpRoFUv7aBZHQKT3OXk5p8F1fZQoaAZoCWgPQwi0OGOYUxRxQJSGlFKUaBVL1WgWR0Ck90Ds+mm+dX2UKGgGaAloD0MIPpY+dEH7cUCUhpRSlGgVS9toFkdApPd0wSJ0n3V9lChoBmgJaA9DCJbqAl6m1XJAlIaUUpRoFUvVaBZHQKT3v0WdmQN1fZQoaAZoCWgPQwgBUTBjCqByQJSGlFKUaBVLwWgWR0Ck+A/0ulGgdX2UKGgGaAloD0MI8FLqkjHucUCUhpRSlGgVTQIBaBZHQKT4HoBaLXN1fZQoaAZoCWgPQwiMgXUcv6JxQJSGlFKUaBVL12gWR0Ck+CZYYBNmdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8245cbdea2ce6d316a5db03bdcc2ee014dfed5580c22026c3de4fa50b4bbdbed
3
+ size 143990
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6142fed0e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6142fed170>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6142fed200>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6142fed290>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6142fed320>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6142fed3b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6142fed440>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6142fed4d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6142fed560>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6142fed5f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6142fed680>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f614303f510>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652781175.0434828,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMVNT24PIW72FzlustbuTyGFsU8WbucvQAAgD8AAIA/AIWRPHuWsrpdW2+4MV5ps9i//bmVxog3AACAPwAAgD8zOYS9G0rBPibvPD6eu8i+KbWSPV4lk7wAAAAAAAAAAC0yHL4VYVM/paLNOKtsw75gDlu+K+TsPQAAAAAAAAAABpkxPpAjUz+WzQ6+pH/1vn3vQT77Wj++AAAAAAAAAABzA9S9pkT9PipAxD48/qe+wO68PXQZkz0AAAAAAAAAADOEKj5R7ug+xKPHvlYJ5r7CKZw9im1wvgAAAAAAAAAAZhQXvNwgoT+Oa1K9vmr5vtwCIb3wZb+8AAAAAAAAAACNwP09Yu9GP5UbZL0KL/2+ODkKPgaj370AAAAAAAAAAA3ei70fZq8/cUApvpsj6r7tuhK+EqMXvQAAAAAAAAAA5sEwPUDW/z7Y6i292gPMvhquGj2uL5Q8AAAAAAAAAAAAA688FOidusgPTTnCNmQ0iO9fOurva7gAAIA/AACAP/P2dz6ttKI+IHzKvlrGxr77MXY9UZyPvgAAAAAAAAAAMwfgO1LhrD9i4zc9PuS6vmhErjsK1Ag8AAAAAAAAAACzb0E9cojhPsrt+r1z+NO+dXaeO/dVAr0AAAAAAAAAAM23s710R7s/mzgfv9xWnDyTuy29jmyHvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhBCQL2FXckCUhpRSlIwBbJRL14wBdJRHQKTQkmUnogV1fZQoaAZoCWgPQwhtVKcDGb9wQJSGlFKUaBVL4mgWR0Ck0QmN70FsdX2UKGgGaAloD0MIONvcmJ5nckCUhpRSlGgVS81oFkdApNEY2n8893V9lChoBmgJaA9DCH+mXrdIFXNAlIaUUpRoFUv7aBZHQKTRXRceKbd1fZQoaAZoCWgPQwhqwYu+gupxQJSGlFKUaBVL6GgWR0Ck0YU0WM0hdX2UKGgGaAloD0MIjX40nLJVbkCUhpRSlGgVS+VoFkdApNHSKrJbMXV9lChoBmgJaA9DCG8MAcAxkXFAlIaUUpRoFUvXaBZHQKTR74FA3UB1fZQoaAZoCWgPQwioGVJF8aNzQJSGlFKUaBVL8WgWR0Ck0fGZmZmadX2UKGgGaAloD0MIYJD0aRWWbkCUhpRSlGgVTQcBaBZHQKTSYGM4tHx1fZQoaAZoCWgPQwi/nUSE/89xQJSGlFKUaBVL1WgWR0Ck0vCsGPgfdX2UKGgGaAloD0MI74/3qtUWcECUhpRSlGgVS/toFkdApNMQHHFPznV9lChoBmgJaA9DCP1nzY8/HXFAlIaUUpRoFU32AmgWR0Ck01CBXjlxdX2UKGgGaAloD0MIR1UTRB2PcUCUhpRSlGgVS/toFkdApNN/c580DXV9lChoBmgJaA9DCL0Yyon2ZnBAlIaUUpRoFUvxaBZHQKTURTWoWHl1fZQoaAZoCWgPQwj6X65FS5VwQJSGlFKUaBVL8mgWR0Ck1NutGNJfdX2UKGgGaAloD0MIfJkoQuqsb0CUhpRSlGgVS/JoFkdApNTiay8jA3V9lChoBmgJaA9DCHpQUIqWcXFAlIaUUpRoFUv2aBZHQKTVa15Sm651fZQoaAZoCWgPQwiRfCWQkkVwQJSGlFKUaBVL6GgWR0Ck1Xr6+FlDdX2UKGgGaAloD0MIK78MxkhscUCUhpRSlGgVS/poFkdApNWOQuEmIHV9lChoBmgJaA9DCHU8ZqCy6HFAlIaUUpRoFUvoaBZHQKTVoFlkH2R1fZQoaAZoCWgPQwgaNPRPMCxxQJSGlFKUaBVL6WgWR0Ck1e9cSoOydX2UKGgGaAloD0MIIqmFkoljcUCUhpRSlGgVS+RoFkdApNX6eTV2BHV9lChoBmgJaA9DCObqxyb5IXNAlIaUUpRoFUvwaBZHQKTWKEeQuEp1fZQoaAZoCWgPQwiTjnIwm1xzQJSGlFKUaBVL5GgWR0Ck1mbqIJqqdX2UKGgGaAloD0MIHCYapOChckCUhpRSlGgVS+FoFkdApNbhnL7oCHV9lChoBmgJaA9DCOnTKvrDz3BAlIaUUpRoFUvRaBZHQKTXMbvPTod1fZQoaAZoCWgPQwgAdJgvL8xwQJSGlFKUaBVL5GgWR0Ck11QEIPbxdX2UKGgGaAloD0MIsYaL3NOjcUCUhpRSlGgVS/poFkdApNd3QfIS13V9lChoBmgJaA9DCDfhXpl3DXFAlIaUUpRoFUvkaBZHQKToPkxREWt1fZQoaAZoCWgPQwgc0qjASe9uQJSGlFKUaBVL32gWR0Ck6LwhGH58dX2UKGgGaAloD0MIQkC+hIofY0CUhpRSlGgVTegDaBZHQKToz+kxh2J1fZQoaAZoCWgPQwg2k2+2uc9yQJSGlFKUaBVLx2gWR0Ck6OEHD766dX2UKGgGaAloD0MIGXPXErKUcUCUhpRSlGgVS/loFkdApOktyaNMoXV9lChoBmgJaA9DCE4LXvSVCW9AlIaUUpRoFUviaBZHQKTpSqABkqd1fZQoaAZoCWgPQwgm++dpwPhwQJSGlFKUaBVL2GgWR0Ck6VNSQ5mzdX2UKGgGaAloD0MISpUoe0s+c0CUhpRSlGgVS/VoFkdApOm7rNW2gHV9lChoBmgJaA9DCGGJB5RN/W5AlIaUUpRoFUvdaBZHQKTpwJHiFTN1fZQoaAZoCWgPQwjjx5i7FuxtQJSGlFKUaBVL5mgWR0Ck6hH6MzdldX2UKGgGaAloD0MIlIlbBXFGc0CUhpRSlGgVS/VoFkdApOoXNA1NxnV9lChoBmgJaA9DCGssYW0ME3BAlIaUUpRoFUveaBZHQKTqLkWAPNF1fZQoaAZoCWgPQwjwUX+9gnhzQJSGlFKUaBVL12gWR0Ck6r1E/jbSdX2UKGgGaAloD0MIyLQ2jW1tcUCUhpRSlGgVS/NoFkdApOru6VdHD3V9lChoBmgJaA9DCIsXC0NkfXFAlIaUUpRoFUvtaBZHQKTrNgNPP9l1fZQoaAZoCWgPQwi3tYXnZe5yQJSGlFKUaBVL5mgWR0Ck6zkOI68ydX2UKGgGaAloD0MIlgZ+VMPZbkCUhpRSlGgVS+BoFkdApOvixmkFfXV9lChoBmgJaA9DCHk/br88JnNAlIaUUpRoFUvWaBZHQKTsSC4jKPp1fZQoaAZoCWgPQwjW5v9VR+tuQJSGlFKUaBVL5WgWR0Ck7Gg3Lmp3dX2UKGgGaAloD0MIV1uxvywCc0CUhpRSlGgVS+hoFkdApOyFAzHjqHV9lChoBmgJaA9DCHcTfNM0dXFAlIaUUpRoFUvTaBZHQKTsqDpTuOV1fZQoaAZoCWgPQwhnYyXmWSJzQJSGlFKUaBVL32gWR0Ck7NP/R3NcdX2UKGgGaAloD0MIyLd3DTpacECUhpRSlGgVS+BoFkdApO1CsCDEnHV9lChoBmgJaA9DCBiT/l6KcnJAlIaUUpRoFUvlaBZHQKTtXF2FFlV1fZQoaAZoCWgPQwhIFcWrrIVyQJSGlFKUaBVNCAFoFkdApO1hxPwd83V9lChoBmgJaA9DCFbWNsVjV3BAlIaUUpRoFUvaaBZHQKTtov0RODd1fZQoaAZoCWgPQwieeqTBbR9wQJSGlFKUaBVL7mgWR0Ck7dcuJ1q4dX2UKGgGaAloD0MItiv0wTLNckCUhpRSlGgVS/5oFkdApO4XrY5DJHV9lChoBmgJaA9DCNmxEYgXd3JAlIaUUpRoFUvgaBZHQKTufq/M4cZ1fZQoaAZoCWgPQwjAJJUppjtxQJSGlFKUaBVL8GgWR0Ck7pKveP7vdX2UKGgGaAloD0MIPbt868PiS0CUhpRSlGgVS4xoFkdApO6hCBwuNHV9lChoBmgJaA9DCKlnQSgvOnJAlIaUUpRoFUvbaBZHQKTutqD9Oyp1fZQoaAZoCWgPQwjcLjTXaUNwQJSGlFKUaBVL9WgWR0Ck7xu+IuXedX2UKGgGaAloD0MITkF+NjKScECUhpRSlGgVS+VoFkdApO+KxZ+x4nV9lChoBmgJaA9DCIF38ukxmm9AlIaUUpRoFUvTaBZHQKTwAUSIxg11fZQoaAZoCWgPQwh72AsFrOFyQJSGlFKUaBVL9GgWR0Ck8Cpx3mmtdX2UKGgGaAloD0MIVYZxNwgscUCUhpRSlGgVS+poFkdApPA7YqXnhnV9lChoBmgJaA9DCFZETfS5EnNAlIaUUpRoFUvQaBZHQKTwolsxfv51fZQoaAZoCWgPQwiBfAkVXKVyQJSGlFKUaBVL/2gWR0Ck8NqODJ2ddX2UKGgGaAloD0MI8zrikM2wc0CUhpRSlGgVS+BoFkdApPDqGvfTC3V9lChoBmgJaA9DCOlF7X4VX3FAlIaUUpRoFUvraBZHQKTw/KJ2t+11fZQoaAZoCWgPQwjHuyNjtchwQJSGlFKUaBVL3GgWR0Ck8RsnAqNIdX2UKGgGaAloD0MIVpxqLYy+cECUhpRSlGgVS9NoFkdApPEp7LMcInV9lChoBmgJaA9DCEz75v7qiW5AlIaUUpRoFUvgaBZHQKTxn2YfGMp1fZQoaAZoCWgPQwh2Tx4WKjpxQJSGlFKUaBVL4mgWR0Ck8hHv2GqQdX2UKGgGaAloD0MICryTT8/6cECUhpRSlGgVS+hoFkdApPI9b9qDb3V9lChoBmgJaA9DCEvqBDQRC3NAlIaUUpRoFUvraBZHQKTyV0xM3611fZQoaAZoCWgPQwipvB3hNF9xQJSGlFKUaBVL8WgWR0Ck8oLupjtpdX2UKGgGaAloD0MI2ZYBZymocECUhpRSlGgVS+9oFkdApPLmm1pj+nV9lChoBmgJaA9DCAIqHEEqTHNAlIaUUpRoFUvYaBZHQKTy8iItUXJ1fZQoaAZoCWgPQwjnwkgv6rBwQJSGlFKUaBVL0mgWR0Ck85CPZIxydX2UKGgGaAloD0MIhxQDJBo+cECUhpRSlGgVS+hoFkdApPOzeEZiu3V9lChoBmgJaA9DCJZZhGIrWHNAlIaUUpRoFUvgaBZHQKTzvq1w5vN1fZQoaAZoCWgPQwi7YHDNnYpxQJSGlFKUaBVL12gWR0Ck9Baa1Cw9dX2UKGgGaAloD0MIzaylgPTOckCUhpRSlGgVS+FoFkdApPR6jcmBv3V9lChoBmgJaA9DCLrZHyi3rW9AlIaUUpRoFUvgaBZHQKT0yzl90A91fZQoaAZoCWgPQwjwiuB/q3luQJSGlFKUaBVL7mgWR0Ck9MYI8hcJdX2UKGgGaAloD0MI0CnIz0YocECUhpRSlGgVS+VoFkdApPTSPjn3c3V9lChoBmgJaA9DCC/f+rDeyXFAlIaUUpRoFUvqaBZHQKT1dWvr4WV1fZQoaAZoCWgPQwiT4Xg+w/lwQJSGlFKUaBVLy2gWR0Ck9fKz7di2dX2UKGgGaAloD0MI628JwL/Tb0CUhpRSlGgVS+xoFkdApPY7jrAxjHV9lChoBmgJaA9DCPdzCvJzmXBAlIaUUpRoFUvwaBZHQKT2bLkCFK11fZQoaAZoCWgPQwj19ueiYQZyQJSGlFKUaBVNVgFoFkdApPax9uxbCHV9lChoBmgJaA9DCI5Yi09BDHFAlIaUUpRoFUvcaBZHQKT2wyBTXJ51fZQoaAZoCWgPQwgw1jcweaFzQJSGlFKUaBVNHAFoFkdApPblfeDWb3V9lChoBmgJaA9DCDsZHCWvQW5AlIaUUpRoFUv7aBZHQKT3OXk5p8F1fZQoaAZoCWgPQwi0OGOYUxRxQJSGlFKUaBVL1WgWR0Ck90Ds+mm+dX2UKGgGaAloD0MIPpY+dEH7cUCUhpRSlGgVS9toFkdApPd0wSJ0n3V9lChoBmgJaA9DCJbqAl6m1XJAlIaUUpRoFUvVaBZHQKT3v0WdmQN1fZQoaAZoCWgPQwgBUTBjCqByQJSGlFKUaBVLwWgWR0Ck+A/0ulGgdX2UKGgGaAloD0MI8FLqkjHucUCUhpRSlGgVTQIBaBZHQKT4HoBaLXN1fZQoaAZoCWgPQwiMgXUcv6JxQJSGlFKUaBVL12gWR0Ck+CZYYBNmdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 492,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8615b5ec3e9866c9d880c9c96e265ee25f609db9347258c440f195cbfba34fe2
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee68574c1a147b19266c62b5c939b7ed99b94a2cbfff6d22adaf37a412be4de4
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4be67373cd26adcf47f183f83191480eddb14cfbb1f2a9e4ead04b7689e32aea
3
+ size 189268
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 274.34337052428833, "std_reward": 16.118972060549503, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-17T11:26:43.787581"}