dbrx-instruct-4.25bpw-exl2 / modeling_dbrx.py
Edward Kim
created 4.25bpw exl2 quant
181cf4e
"""PyTorch Dbrx model."""
import math
import warnings
from copy import deepcopy
from functools import partial
from typing import Any, Callable, Dict, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_outputs import (MoeCausalLMOutputWithPast,
MoeModelOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import is_flash_attn_2_available, logging
from .configuration_dbrx import DbrxAttentionConfig, DbrxConfig, DbrxFFNConfig
if is_flash_attn_2_available():
try:
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import pad_input # noqa
from flash_attn.bert_padding import index_first_axis, unpad_input
except:
pass
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = 'DbrxConfig'
#############################################################################
# Copied from LLaMaRotaryEmbedding
#############################################################################
class DbrxRotaryEmbedding(nn.Module):
def __init__(self,
dim: int,
max_position_embeddings: int = 2048,
base: float = 10000.0,
scaling_factor: float = 1.0):
super().__init__()
self.scaling_factor = scaling_factor
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base**(
torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
self.register_buffer('inv_freq', inv_freq, persistent=False)
# For BC we register cos and sin cached
self.max_seq_len_cached = max_position_embeddings
@torch.no_grad()
def forward(
self, x: torch.Tensor, position_ids: torch.LongTensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# x: [bs, num_attention_heads, seq_len, head_size]
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 since bfloat16 loses precision on long contexts
# See https://github.com/huggingface/transformers/pull/29285
device_type = x.device.type
device_type = device_type if isinstance(
device_type, str) and device_type != 'mps' else 'cpu'
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float()
@ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x: torch.Tensor) -> torch.Tensor:
"""Rotates half the hidden dims of the input."""
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
unsqueeze_dim: int = 1) -> Tuple[torch.Tensor, torch.Tensor]:
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos and
sin so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos and sin have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos and sin broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""Equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
(batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :,
None, :, :].expand(batch, num_key_value_heads,
n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
head_dim)
#############################################################################
#############################################################################
# Modified from modeling_mixtral
#############################################################################
def load_balancing_loss_func(
gate_logits: torch.Tensor,
num_experts: int,
top_k: int,
attention_mask: Optional[torch.Tensor],
) -> torch.Tensor:
r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts (`int`):
Number of experts.
top_k (`int`):
The number of experts each token is routed to.
attention_mask (`torch.Tensor`, None):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return torch.tensor(0.0)
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat(
[layer_gate.to(compute_device) for layer_gate in gate_logits],
dim=0)
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits,
dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (
batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (attention_mask[None, :, :, None, None].expand(
(num_hidden_layers, batch_size, sequence_length, top_k,
num_experts)).reshape(-1, top_k, num_experts).to(compute_device))
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(
expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None].expand(
(num_hidden_layers, batch_size, sequence_length,
num_experts)).reshape(-1, num_experts).to(compute_device))
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(
routing_weights * router_per_expert_attention_mask,
dim=0) / torch.sum(router_per_expert_attention_mask, dim=0)
overall_loss = torch.sum(tokens_per_expert *
router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
#############################################################################
def resolve_ffn_act_fn(
ffn_act_fn: dict) -> Callable[[torch.Tensor], torch.Tensor]:
"""Resolve the activation function for the feed-forward network.
Args:
ffn_act_fn (dict): The configuration dictionary for the activation function.
The dict config must specify the 'name' of a torch.nn.functional activation
function. All of other key values pairs are bound to the function as a partial.
Returns:
Callable[[torch.Tensor], torch.Tensor]: The activation function.
"""
config = deepcopy(ffn_act_fn)
name = config.pop('name')
if not hasattr(nn.functional, name):
raise ValueError(f'Unrecognised activation function name ({name}).')
act = getattr(nn.functional, name)
return partial(act, **config)
#############################################################################
# Copied from LLaMaAttention
#############################################################################
def _get_unpad_data(attention_mask: torch.Tensor):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32),
(1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class DbrxAttention(nn.Module):
"""Multi-head self attention."""
def __init__(self,
hidden_size: int,
num_heads: int,
max_position_embeddings: int,
attn_config: DbrxAttentionConfig,
block_idx: Optional[int] = None):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = max_position_embeddings
self.block_idx = block_idx
self.config = attn_config
if block_idx is None:
logger.warning_once(
f'Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will '
+
'lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` '
+ 'when creating this class.')
self.attn_pdrop = attn_config.attn_pdrop
self.clip_qkv = attn_config.clip_qkv
self.num_key_value_heads = attn_config.kv_n_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.rope_theta = attn_config.rope_theta
self.Wqkv = nn.Linear(self.hidden_size,
self.hidden_size +
2 * self.num_key_value_heads * self.head_dim,
bias=False)
self.out_proj = nn.Linear(self.hidden_size,
self.hidden_size,
bias=False)
self.rotary_emb = DbrxRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
bsz, q_len, _ = hidden_states.size()
qkv_states = self.Wqkv(hidden_states)
if self.clip_qkv is not None:
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
query_states, key_states, value_states = qkv_states.split(
[
self.hidden_size,
self.num_key_value_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
],
dim=2,
)
query_states = query_states.view(bsz, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
past_key_value = getattr(self, 'past_key_value', past_key_value)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states,
key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {
'sin': sin,
'cos': cos,
'cache_position': cache_position
}
key_states, value_states = past_key_value.update(
key_states, value_states, self.block_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(
2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, :key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1,
dtype=torch.float32).to(
query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights,
p=self.attn_pdrop,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
+ f' {attn_output.size()}')
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class DbrxFlashAttention2(DbrxAttention):
"""Dbrx flash attention module.
This module inherits from `DbrxAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it
calls the public API of flash attention.
"""
def __init__(self, *args: Any, **kwargs: Any):
if not is_flash_attn_2_available():
raise ImportError(
'Flash Attention 2 is not available. Please install it with `pip install flash-attn`.'
)
super().__init__(*args, **kwargs)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[Tuple[torch.Tensor]]]:
logger.info(
'Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.'
)
output_attentions = False
bsz, q_len, _ = hidden_states.size()
qkv_states = self.Wqkv(hidden_states)
if self.clip_qkv is not None:
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
query_states, key_states, value_states = qkv_states.split(
[
self.hidden_size,
self.num_key_value_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
],
dim=2,
)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads,
self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states,
key_states, cos, sin)
past_key_value = getattr(self, 'past_key_value', past_key_value)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {
'sin': sin,
'cos': cos,
'cache_position': cache_position
}
key_states, value_states = past_key_value.update(
key_states, value_states, self.block_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attn_pdrop if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, '_pre_quantization_dtype'):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = query_states.dtype
logger.warning_once(
f'The input hidden states seems to be silently casted in float32, this might be '
+
f'related to the fact you have upcasted embedding or layer norm layers in '
+ f'float32. We will cast back the input in {target_dtype}.')
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
)
attn_output = attn_output.reshape(bsz, q_len,
self.hidden_size).contiguous()
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value # type: ignore
def _flash_attention_forward(
self,
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: Union[torch.LongTensor, None],
query_length: int,
dropout: float = 0.0,
softmax_scale: Optional[float] = None,
):
"""Use FlashAttention, stripping padding tokens if necessary.
Args:
query_states (torch.Tensor): Input query states to be passed to Flash Attention API
key_states (torch.Tensor): Input key states to be passed to Flash Attention API
value_states (torch.Tensor): Input value states to be passed to Flash Attention API
attention_mask (torch.LongTensor | None): The padding mask - corresponds to a tensor of size
(batch_size, seq_len) where 0 stands for the position of padding tokens and 1
for the position of non-padding tokens.
query_length (int): The length of the query sequence
dropout (float): Attention dropout
softmax_scale (float, optional): The scaling of QK^T before applying softmax.
Defaults to 1 / sqrt(head_dim)
"""
causal = True
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask,
query_length)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(
attn_output_unpad,
indices_q,
batch_size,
query_length,
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
return attn_output
def _upad_input(self, query_layer: torch.Tensor, key_layer: torch.Tensor,
value_layer: torch.Tensor, attention_mask: torch.Tensor,
query_length: int):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
head_dim), indices_k)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
head_dim), indices_k)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads,
head_dim), indices_k)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
DBRX_ATTENTION_CLASSES = {
'eager': DbrxAttention,
'flash_attention_2': DbrxFlashAttention2,
}
class DbrxNormAttentionNorm(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
max_position_embeddings: int,
resid_pdrop: float,
attn_implementation: str,
attn_config: DbrxAttentionConfig,
block_idx: Optional[int] = None,
):
super().__init__()
self.block_idx = block_idx
self.resid_pdrop = resid_pdrop
self.norm_1 = nn.LayerNorm(hidden_size, bias=False)
self.attn = DBRX_ATTENTION_CLASSES[attn_implementation](
hidden_size=hidden_size,
num_heads=num_heads,
max_position_embeddings=max_position_embeddings,
attn_config=attn_config,
block_idx=block_idx,
)
self.norm_2 = nn.LayerNorm(hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor],
Optional[Cache]]:
residual_states = hidden_states
hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype)
hidden_states, attn_weights, past_key_value = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = nn.functional.dropout(hidden_states,
p=self.resid_pdrop,
training=self.training)
hidden_states = hidden_states + residual_states
residual_states = hidden_states
hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype)
return residual_states, hidden_states, attn_weights, past_key_value
class DbrxRouter(nn.Module):
def __init__(self, hidden_size: int, moe_num_experts: int, moe_top_k: int,
moe_jitter_eps: Optional[float],
moe_normalize_expert_weights: Optional[float],
uniform_expert_assignment: bool):
super().__init__()
self.hidden_size = hidden_size
self.moe_num_experts = moe_num_experts
self.moe_top_k = moe_top_k
self.moe_jitter_eps = moe_jitter_eps
self.moe_normalize_expert_weights = moe_normalize_expert_weights
self.uniform_expert_assignment = uniform_expert_assignment
self.layer = nn.Linear(self.hidden_size,
self.moe_num_experts,
bias=False)
def jitter(self, x: torch.Tensor) -> torch.Tensor:
if self.moe_jitter_eps is None:
raise RuntimeError('The router does not have moe_jitter_eps set.')
low = 1.0 - self.moe_jitter_eps
high = 1.0 + self.moe_jitter_eps
noise = torch.rand(x.size(), dtype=x.dtype, device=x.device)
return low + noise * (high - low)
def forward(
self, x: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
if self.training and self.moe_jitter_eps is not None:
x = x * self.jitter(x)
weights = self.layer(x.view(-1,
x.shape[-1])).softmax(dim=-1,
dtype=torch.float32)
top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1)
if self.moe_normalize_expert_weights:
top_weights = top_weights / torch.norm(
top_weights,
p=self.moe_normalize_expert_weights,
dim=-1,
keepdim=True)
if self.uniform_expert_assignment:
with torch.no_grad():
uniform_tensor = torch.arange(
0,
top_experts.numel(),
device=top_experts.device,
dtype=top_experts.dtype) % self.moe_num_experts
top_experts = uniform_tensor.reshape(top_experts.shape)
# Note, weights and top_weights are not changed
weights = weights.to(x.dtype)
top_weights = top_weights.to(x.dtype)
return weights, top_weights, top_experts # type: ignore
class DbrxExpertGLU(nn.Module):
def __init__(self, hidden_size: int, ffn_hidden_size: int,
moe_num_experts: int, ffn_act_fn: dict):
super().__init__()
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.moe_num_experts = moe_num_experts
self.w1 = nn.Parameter(
torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
self.v1 = nn.Parameter(
torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
self.w2 = nn.Parameter(
torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
self.activation_fn = resolve_ffn_act_fn(ffn_act_fn)
def forward(self, x: torch.Tensor, expert_idx: int) -> torch.Tensor:
expert_w1 = self.w1.view(self.moe_num_experts, self.ffn_hidden_size,
self.hidden_size)[expert_idx]
expert_v1 = self.v1.view(self.moe_num_experts, self.ffn_hidden_size,
self.hidden_size)[expert_idx]
expert_w2 = self.w2.view(self.moe_num_experts, self.ffn_hidden_size,
self.hidden_size)[expert_idx]
x1 = x.matmul(expert_w1.t())
x2 = x.matmul(expert_v1.t())
x1 = self.activation_fn(x1)
x1 = x1 * x2
x1 = x1.matmul(expert_w2)
return x1
class DbrxExperts(nn.Module):
def __init__(self, hidden_size: int, ffn_hidden_size: int,
moe_num_experts: int, ffn_act_fn: dict):
super().__init__()
self.moe_num_experts = moe_num_experts
self.mlp = DbrxExpertGLU(hidden_size=hidden_size,
ffn_hidden_size=ffn_hidden_size,
moe_num_experts=moe_num_experts,
ffn_act_fn=ffn_act_fn)
def forward(self, x: torch.Tensor, weights: torch.Tensor,
top_weights: torch.Tensor,
top_experts: torch.LongTensor) -> torch.Tensor:
bsz, q_len, hidden_size = x.shape
x = x.view(-1, hidden_size)
out = torch.zeros_like(x)
expert_mask = nn.functional.one_hot(
top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0)
for expert_idx in range(0, self.moe_num_experts):
topk_idx, token_idx = torch.where(expert_mask[expert_idx])
if token_idx.shape[0] == 0:
continue
token_list = token_idx.tolist()
topk_list = topk_idx.tolist()
expert_tokens = x[None, token_list].reshape(-1, hidden_size)
expert_out = self.mlp(
expert_tokens, expert_idx) * top_weights[token_list, topk_list,
None]
out.index_add_(0, token_idx, expert_out)
out = out.reshape(bsz, q_len, hidden_size)
return out
class DbrxFFN(nn.Module):
def __init__(self, hidden_size: int, ffn_config: DbrxFFNConfig):
super().__init__()
self.router = DbrxRouter(
hidden_size,
moe_num_experts=ffn_config.moe_num_experts,
moe_top_k=ffn_config.moe_top_k,
moe_jitter_eps=ffn_config.moe_jitter_eps,
moe_normalize_expert_weights=ffn_config.
moe_normalize_expert_weights,
uniform_expert_assignment=ffn_config.uniform_expert_assignment,
)
self.experts = DbrxExperts(
hidden_size=hidden_size,
ffn_hidden_size=ffn_config.ffn_hidden_size,
moe_num_experts=ffn_config.moe_num_experts,
ffn_act_fn=ffn_config.ffn_act_fn,
)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
weights, top_weights, top_experts = self.router(x)
out = self.experts(x, weights, top_weights, top_experts)
return out, weights
class DbrxBlock(nn.Module):
def __init__(self, config: DbrxConfig, block_idx: int):
super().__init__()
self.hidden_size = config.d_model
self.resid_pdrop = config.resid_pdrop
self.block_idx = block_idx
self.norm_attn_norm = DbrxNormAttentionNorm(
hidden_size=config.d_model,
num_heads=config.n_heads,
max_position_embeddings=config.max_seq_len,
resid_pdrop=config.resid_pdrop,
attn_implementation=config._attn_implementation,
attn_config=config.attn_config,
block_idx=block_idx,
)
self.ffn = DbrxFFN(hidden_size=config.d_model,
ffn_config=config.ffn_config)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[Cache]], Tuple[
torch.Tensor, Optional[torch.Tensor], Optional[Cache]],
Tuple[torch.Tensor, Optional[torch.Tensor],
Optional[torch.Tensor]], Tuple[
torch.Tensor, Optional[Cache], Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache],
Optional[torch.Tensor]],]:
"""Forward function for DbrxBlock.
Args:
hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)`
attention_mask (`torch.Tensor`, optional): attention mask of size (batch_size, sequence_length)
if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length)
if default attention is used.
past_key_value (`Tuple(torch.Tensor)`, optional): cached past key and value projection states
output_attentions (`bool`, optional): Whether or not to return the attentions tensors of all
attention layers. See `attentions` under returned tensors for more detail.
output_router_logits (`bool`, optional): Whether or not to return the router logits.
use_cache (`bool`, optional): If set to `True`, `past_key_values` key value states are
returned and can be used to speed up decoding (see `past_key_values`).
cache_position (`torch.LongTensor`, optional): position ids of the cache
"""
if 'padding_mask' in kwargs:
warnings.warn(
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
)
# Norm + Attention + Norm
resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
# Fully Connected
hidden_states, router_logits = self.ffn(hidden_states)
hidden_states = nn.functional.dropout(hidden_states,
p=self.resid_pdrop,
training=self.training)
hidden_states = resid_states + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
class DbrxPreTrainedModel(PreTrainedModel):
config_class = DbrxConfig
base_model_prefix = 'transformer'
supports_gradient_checkpointing = True
_no_split_modules = ['DbrxBlock']
_skip_keys_device_placement = ['past_key_values']
_supports_flash_attn_2 = True
_supports_sdpa = False
_supports_cache_class = True
def _init_weights(self, module: nn.Module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, DbrxExpertGLU):
module.w1.data.normal_(mean=0.0, std=std)
module.v1.data.normal_(mean=0.0, std=std)
module.w2.data.normal_(mean=0.0, std=std)
def _setup_cache(self, cache_cls: Any, max_batch_size: int,
max_cache_len: int): # TODO: how to set var type of class?
if self.config._attn_implementation == 'flash_attention_2' and cache_cls == StaticCache:
raise ValueError(
'`static` cache implementation is not compatible with ' +
'`attn_implementation==flash_attention_2`. Make sure to use ' +
'`spda` in the mean time and open an issue at https://github.com/huggingface/transformers.'
)
for block in self.transformer.blocks:
device = block.norm_attn_norm.norm_1.weight.device
if hasattr(self.config, '_pre_quantization_dtype'):
dtype = self.config._pre_quantization_dtype
else:
dtype = block.norm_attn_norm.attn.out_proj.weight.dtype
block.norm_attn_norm.attn.past_key_value = cache_cls(self.config,
max_batch_size,
max_cache_len,
device=device,
dtype=dtype)
def _reset_cache(self):
for block in self.transformer.blocks:
block.norm_attn_norm.attn.past_key_value = None
class DbrxModel(DbrxPreTrainedModel):
"""Transformer decoder consisting of *config.num_hidden_layers*
[`DbrxBlock`] layers.
Args:
config: DbrxConfig
"""
def __init__(self, config: DbrxConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.emb_pdrop = config.emb_pdrop
self.wte = nn.Embedding(config.vocab_size, config.d_model,
self.padding_idx)
self.blocks = nn.ModuleList([
DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)
])
self.norm_f = nn.LayerNorm(config.d_model, bias=False)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.wte
def set_input_embeddings(self, value: nn.Embedding):
self.wte = value
def _autocast_input_embeddings(self,
inputs_embeds: torch.Tensor) -> torch.Tensor:
if inputs_embeds.device.type == 'cuda' and torch.is_autocast_enabled():
return inputs_embeds.to(dtype=torch.get_autocast_gpu_dtype())
elif inputs_embeds.device.type == 'cpu' and torch.is_autocast_cpu_enabled(
):
return inputs_embeds.to(dtype=torch.get_autocast_cpu_dtype())
else:
return inputs_embeds
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
output_router_logits = (output_router_logits
if output_router_logits is not None else
self.config.output_router_logits)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
'You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one'
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.'
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
inputs_embeds = self._autocast_input_embeddings(
inputs_embeds) # type: ignore
inputs_embeds = nn.functional.dropout(inputs_embeds,
p=self.emb_pdrop,
training=self.training)
past_seen_tokens = 0
if use_cache: # kept for BC (cache positions)
if not isinstance(past_key_values, StaticCache):
past_key_values = DynamicCache.from_legacy_cache(
past_key_values)
past_seen_tokens = past_key_values.get_seq_length( # type: ignore
)
if cache_position is None:
if isinstance(past_key_values, StaticCache):
raise ValueError(
'cache_position is a required argument when using StaticCache.'
)
cache_position = torch.arange( # type: ignore
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0) # type: ignore
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
cache_position) # type: ignore
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,) # type: ignore
if self.gradient_checkpointing and self.training:
block_outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
)
else:
block_outputs = block(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = block_outputs[0]
if use_cache:
next_decoder_cache = block_outputs[
2 if output_attentions else 1]
if output_attentions:
all_self_attns += (block_outputs[1],) # type: ignore
if output_router_logits:
all_router_logits += (block_outputs[-1],) # type: ignore
hidden_states = self.norm_f(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,) # type: ignore
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache() # type: ignore
if isinstance(next_decoder_cache, Cache) else
next_decoder_cache)
if not return_dict:
return tuple(v for v in [
hidden_states, next_cache, all_hidden_states, all_self_attns,
all_router_logits
] if v is not None)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
def _update_causal_mask(
self, attention_mask: Optional[torch.Tensor],
input_tensor: torch.Tensor,
cache_position: torch.Tensor) -> Optional[torch.Tensor]:
if self.config._attn_implementation == 'flash_attention_2':
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if hasattr(self.blocks[0].norm_attn_norm.attn,
'past_key_value'): # static cache
target_length = self.config.max_position_embeddings
else: # dynamic cache
target_length = (attention_mask.shape[-1] if isinstance(
attention_mask, torch.Tensor) else cache_position[-1] + 1)
target_length = int(target_length)
causal_mask = torch.full((sequence_length, target_length),
fill_value=min_dtype,
dtype=dtype,
device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(
target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None,
None, :, :].expand(input_tensor.shape[0], 1,
-1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone(
) # copy to contiguous memory for in-place edit
if attention_mask.dim() == 2:
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[..., :mask_length].eq(
0.0) * attention_mask[:, None, None, :].eq(0.0)
causal_mask[..., :mask_length] = causal_mask[
..., :mask_length].masked_fill(padding_mask, min_dtype)
elif attention_mask.dim() == 4:
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
# cache. In that case, the 4D attention mask attends to the newest tokens only.
if attention_mask.shape[
-2] < cache_position[0] + sequence_length:
offset = cache_position[0]
else:
offset = 0
mask_shape = attention_mask.shape
mask_slice = (attention_mask.eq(0.0)).to(
dtype=dtype) * min_dtype
causal_mask[:mask_shape[0], :mask_shape[1],
offset:mask_shape[2] +
offset, :mask_shape[3]] = mask_slice
if (self.config._attn_implementation == 'sdpa' and
attention_mask is not None and
attention_mask.device.type == 'cuda'):
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
is_tracing = (
torch.jit.is_tracing() or
isinstance(input_tensor, torch.fx.Proxy) or # type: ignore
(hasattr(torch, '_dynamo') and torch._dynamo.is_compiling()))
if not is_tracing and torch.any(attention_mask != 1):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(
causal_mask, min_dtype)
return causal_mask
class DbrxForCausalLM(DbrxPreTrainedModel):
def __init__(self, config: DbrxConfig):
super().__init__(config)
self.transformer = DbrxModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size,
config.vocab_size,
bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.ffn_config.moe_num_experts
self.num_experts_per_tok = config.ffn_config.moe_top_k
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.transformer.get_input_embeddings()
def set_input_embeddings(self, value: nn.Embedding):
self.transformer.set_input_embeddings(value)
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head
def set_output_embeddings(self, new_embeddings: nn.Linear):
self.lm_head = new_embeddings
def set_decoder(self, decoder: DbrxModel):
self.transformer = decoder
def get_decoder(self) -> DbrxModel:
return self.transformer
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""Forward function for causal language modeling.
Example:
```python
>>> from transformers import AutoTokenizer, DbrxForCausalLM
>>> model = DbrxForCausalLM.from_pretrained("databricks/dbrx")
>>> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else
self.config.output_hidden_states)
output_router_logits = (output_router_logits
if output_router_logits is not None else
self.config.output_router_logits)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1],
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None and loss is not None:
loss += self.router_aux_loss_coef * aux_loss.to(
loss.device) # make sure to reside in the same device
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: Any) -> Dict[str, Any]:
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[
1] > input_ids.shape[1]:
input_ids = input_ids[:,
-(attention_mask.shape[1] - past_length):]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (max_cache_length is not None and attention_mask is not None and
cache_length + input_ids.shape[1] > max_cache_length):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get('position_ids', None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1]:]
if self.generation_config.cache_implementation == 'static':
# generation with static cache
cache_position = kwargs.get('cache_position', None)
if cache_position is None:
past_length = 0
else:
past_length = cache_position[-1] + 1
input_ids = input_ids[:, past_length:]
position_ids = position_ids[:,
past_length:] if position_ids is not None else None
# TODO @gante we should only keep a `cache_position` in generate, and do +=1.
# same goes for position ids. Could also help with continued generation.
input_length = position_ids.shape[
-1] if position_ids is not None else input_ids.shape[-1]
cache_position = torch.arange(past_length,
past_length + input_length,
device=input_ids.device)
position_ids = position_ids.contiguous(
) if position_ids is not None else None
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update(
{ # type: ignore
'position_ids': position_ids,
'cache_position': cache_position,
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values: Cache, beam_idx: torch.LongTensor):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past),)
return reordered_past