ejbejaranos
commited on
Commit
β’
4a74714
1
Parent(s):
b8e0950
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- abideen/Cosmopedia-100k-pretrain
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
base_model:
|
9 |
+
- meta-llama/Llama-3.1-8B-Instruct
|
10 |
+
---
|
11 |
+
# π Llama3-8B-to2B-BitnetDownscaling (from 8B to 2B) Transformation & Training
|
12 |
+
|
13 |
+
This project transforms a Llama3 model from 8B parameters to a BitNet architecture with 2B parameters, applying BitLinear layers. Additionally, the model is trained with a predefined dataset and uploaded to Hugging Face for future use.
|
14 |
+
|
15 |
+
|
16 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6419c2f6b4adb0e101b17b6c/X6O_WbSqbdOWjhTm0tWU1.png)
|
17 |
+
|
18 |
+
## Features π
|
19 |
+
- **Model Size:** 8B parameters π§
|
20 |
+
- **Architecture:** BitNet ποΈ
|
21 |
+
- **Bitlinear Layers:** Reduces weights to values of 1, 0, and -1. β
|
22 |
+
- **Optimized for:** Fast inference and memory efficiency β‘
|
23 |
+
|
24 |
+
## Architecture
|
25 |
+
|
26 |
+
```bash
|
27 |
+
LlamaForCausalLM(
|
28 |
+
(model): LlamaModel(
|
29 |
+
(embed_tokens): Embedding(128256, 4096)
|
30 |
+
(layers): ModuleList(
|
31 |
+
(0-5): 6 x LlamaDecoderLayer(
|
32 |
+
(self_attn): LlamaSdpaAttention(
|
33 |
+
(q_proj): BitLinear(in_features=4096, out_features=4096, bias=False)
|
34 |
+
(k_proj): BitLinear(in_features=4096, out_features=1024, bias=False)
|
35 |
+
(v_proj): BitLinear(in_features=4096, out_features=1024, bias=False)
|
36 |
+
(o_proj): BitLinear(in_features=4096, out_features=4096, bias=False)
|
37 |
+
(rotary_emb): LlamaRotaryEmbedding()
|
38 |
+
)
|
39 |
+
(mlp): LlamaMLP(
|
40 |
+
(gate_proj): BitLinear(in_features=4096, out_features=14336, bias=False)
|
41 |
+
(up_proj): BitLinear(in_features=4096, out_features=14336, bias=False)
|
42 |
+
(down_proj): BitLinear(in_features=14336, out_features=4096, bias=False)
|
43 |
+
(act_fn): SiLU()
|
44 |
+
)
|
45 |
+
(input_layernorm): Identity()
|
46 |
+
(post_attention_layernorm): LlamaRMSNorm((4096,), eps=1e-05)
|
47 |
+
)
|
48 |
+
)
|
49 |
+
(norm): LlamaRMSNorm((4096,), eps=1e-05)
|
50 |
+
(rotary_emb): LlamaRotaryEmbedding()
|
51 |
+
)
|
52 |
+
(lm_head): Linear(in_features=4096, out_features=128256, bias=False)
|
53 |
+
)
|
54 |
+
```
|
55 |
+
---
|
56 |
+
### Model Description
|
57 |
+
|
58 |
+
<!-- Provide a longer summary of what this model is. -->
|
59 |
+
|
60 |
+
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
61 |
+
|
62 |
+
- **Developed by:** [email protected] && [email protected]
|
63 |
+
- **Funded by [optional]:** ITCL
|
64 |
+
- **Model type:** LLama3 8B Tramsformed to Bitnet using Downscaling technique
|
65 |
+
- **Language(s) (NLP):** Bitnet
|
66 |
+
- **License:** [More Information Needed]
|
67 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
68 |
+
|
69 |
+
|
70 |
+
## Requirements π¦
|
71 |
+
Make sure you have the following libraries installed:
|
72 |
+
|
73 |
+
```bash
|
74 |
+
pip install transformers torch huggingface_hub wandb coloredlogs
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
You can install these dependencies using pip! π
|
79 |
+
|
80 |
+
## Usage π
|
81 |
+
### Loading the Model
|
82 |
+
To load the model, you can simply run the following code:
|
83 |
+
|
84 |
+
|
85 |
+
Para usar este modelo, puedes cargarlo desde Hugging Face con el siguiente cΓ³digo:
|
86 |
+
```python
|
87 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
88 |
+
from transformers.models.llama.modeling_llama import *
|
89 |
+
import torch
|
90 |
+
from torch import nn
|
91 |
+
import torch.nn.functional as F
|
92 |
+
import coloredlogs
|
93 |
+
import logging
|
94 |
+
|
95 |
+
|
96 |
+
coloredlogs.install(level='INFO', fmt='%(asctime)s - %(levelname)s - %(message)s', logger=logging.getLogger())
|
97 |
+
logger = logging.getLogger(__name__)
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
HF_TOKEN = "you_api_key_here"
|
103 |
+
|
104 |
+
model = "ejbejaranos/Llama3-8B-ITCL-Bitnet1.6B"
|
105 |
+
|
106 |
+
# Load a pretrained BitNet model
|
107 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
108 |
+
|
109 |
+
model = AutoModelForCausalLM.from_pretrained(
|
110 |
+
model,
|
111 |
+
token=HF_TOKEN
|
112 |
+
)
|
113 |
+
|
114 |
+
# Establece el pad_token_id
|
115 |
+
model.config.pad_token_id = tokenizer.eos_token_id
|
116 |
+
|
117 |
+
def count_parameters(model):
|
118 |
+
# Calculate the number of parameters in billions
|
119 |
+
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad) / 10**9
|
120 |
+
print(f"Model size: {num_params:.3f}B parameters")
|
121 |
+
return int(num_params)
|
122 |
+
|
123 |
+
def activation_quant(x):
|
124 |
+
scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5)
|
125 |
+
y = (x * scale).round().clamp_(-128, 127)
|
126 |
+
y = y / scale
|
127 |
+
return y
|
128 |
+
|
129 |
+
def weight_quant(w):
|
130 |
+
scale = 1.0 / w.abs().mean().clamp_(min=1e-5)
|
131 |
+
u = (w * scale).round().clamp_(-1, 1)
|
132 |
+
u = u / scale
|
133 |
+
return u
|
134 |
+
|
135 |
+
class BitLinear(nn.Linear):
|
136 |
+
def forward(self, x):
|
137 |
+
w = self.weight # a weight tensor with shape [d, k]
|
138 |
+
x = x.to(w.device)
|
139 |
+
RMSNorm = LlamaRMSNorm(x.shape[-1]).to(w.device)
|
140 |
+
x_norm = RMSNorm(x)
|
141 |
+
x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach()
|
142 |
+
w_quant = w + (weight_quant(w) - w).detach()
|
143 |
+
y = F.linear(x_quant, w_quant)
|
144 |
+
return y
|
145 |
+
|
146 |
+
def convert_to_bitnet(model, copy_weights):
|
147 |
+
for name, module in model.named_modules():
|
148 |
+
if isinstance(module, LlamaSdpaAttention) or isinstance(module, LlamaMLP):
|
149 |
+
for child_name, child_module in module.named_children():
|
150 |
+
if isinstance(child_module, nn.Linear):
|
151 |
+
bitlinear = BitLinear(child_module.in_features, child_module.out_features, child_module.bias is not None).to(device="cuda:0")
|
152 |
+
if copy_weights:
|
153 |
+
bitlinear.weight = child_module.weight
|
154 |
+
if child_module.bias is not None:
|
155 |
+
bitlinear.bias = child_module.bias
|
156 |
+
setattr(module, child_name, bitlinear)
|
157 |
+
elif isinstance(module, LlamaDecoderLayer):
|
158 |
+
for child_name, child_module in module.named_children():
|
159 |
+
if isinstance(child_module, LlamaRMSNorm) and child_name == "input_layernorm":
|
160 |
+
setattr(module, child_name, nn.Identity().to(device="cuda:0"))
|
161 |
+
|
162 |
+
convert_to_bitnet(model, copy_weights=True)
|
163 |
+
model.to(device="cuda:0")
|
164 |
+
|
165 |
+
|
166 |
+
logger.info(f"π’ Number of parameters in the model after extracting weights: {count_parameters(model)}")
|
167 |
+
logger.info(f"π Reduced model structure:\n{model}")
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
prompt = "What is the color of sky?"
|
174 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(model.device)
|
175 |
+
inputs['attention_mask'] = inputs['input_ids'] != model.config.pad_token_id
|
176 |
+
|
177 |
+
generate_ids = model.generate(inputs.input_ids, attention_mask=inputs['attention_mask'], max_length=250)
|
178 |
+
decoded_output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
179 |
+
|
180 |
+
print(decoded_output[0]) # Print the generated response
|
181 |
+
|
182 |
+
|
183 |
+
```
|
184 |
+
|
185 |
+
|
186 |
+
### Performing Inference
|
187 |
+
Generate text using the model to unleash its power! π¬β¨
|
188 |
+
|
189 |
+
```text
|
190 |
+
- What role does explainability play in your AI solutions?
|
191 |
+
|
192 |
+
How can you ensure that your AI system is able to accurately predict and respond to user inputs?
|
193 |
+
These are some of the questions that AI developers have been asking themselves in the last few years.
|
194 |
+
In this section, we will explore some of the key concepts and techniques that AI developers have used to develop in their AI systems.
|
195 |
+
|
196 |
+
First, let's consider the importance of understanding the role of AI in AI.
|
197 |
+
AI systems can be incredibly powerful tools for automating tasks, analyzing data, and identifying patterns.
|
198 |
+
They can analyze large datasets and identify patterns, trends, and anomalies that might be missed by human analysts.
|
199 |
+
By analyzing large datasets, AI can help identify patterns and trends that might otherwise go unnoticed.
|
200 |
+
|
201 |
+
One of the most significant challenges in AI development is the lack of transparency and accountability.
|
202 |
+
With AI systems becoming increasingly sophisticated, there is a growing need for transparency and accountability in AI development.
|
203 |
+
This means that there is a growing need for transparency and accountability in AI development.
|
204 |
+
However, as AI becomes more sophisticated, it can also lead to unintended consequences, such as job loss or reputational damage.
|
205 |
+
```
|
206 |
+
|
207 |
+
## Contact π«
|
208 |
+
For questions or suggestions, feel free to reach out to me:
|
209 |
+
- **Email:** [email protected]
|
210 |
+
- **GitHub:** [ejbejaranos](https://github.com/ejbejaranos) π
|