|
from typing import List |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from modules import prompt_parser, devices, sd_samplers_common, shared |
|
from modules.shared import opts, state |
|
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback |
|
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback |
|
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback |
|
from modules.sd_samplers_cfg_denoiser import CFGDenoiser, catenate_conds, subscript_cond, pad_cond |
|
|
|
from scripts.animatediff_logger import logger_animatediff as logger |
|
from scripts.animatediff_ui import AnimateDiffProcess |
|
from scripts.animatediff_prompt import AnimateDiffPromptSchedule |
|
|
|
|
|
class AnimateDiffInfV2V: |
|
cfg_original_forward = None |
|
|
|
def __init__(self, p, prompt_scheduler: AnimateDiffPromptSchedule): |
|
try: |
|
from scripts.external_code import find_cn_script |
|
self.cn_script = find_cn_script(p.scripts) |
|
except: |
|
self.cn_script = None |
|
self.prompt_scheduler = prompt_scheduler |
|
|
|
|
|
|
|
@staticmethod |
|
def ordered_halving(val): |
|
|
|
bin_str = f"{val:064b}" |
|
|
|
bin_flip = bin_str[::-1] |
|
|
|
as_int = int(bin_flip, 2) |
|
|
|
|
|
final = as_int / (1 << 64) |
|
return final |
|
|
|
|
|
|
|
@staticmethod |
|
def uniform( |
|
step: int = ..., |
|
video_length: int = 0, |
|
batch_size: int = 16, |
|
stride: int = 1, |
|
overlap: int = 4, |
|
loop_setting: str = 'R-P', |
|
): |
|
if video_length <= batch_size: |
|
yield list(range(batch_size)) |
|
return |
|
|
|
closed_loop = (loop_setting == 'A') |
|
stride = min(stride, int(np.ceil(np.log2(video_length / batch_size))) + 1) |
|
|
|
for context_step in 1 << np.arange(stride): |
|
pad = int(round(video_length * AnimateDiffInfV2V.ordered_halving(step))) |
|
both_close_loop = False |
|
for j in range( |
|
int(AnimateDiffInfV2V.ordered_halving(step) * context_step) + pad, |
|
video_length + pad + (0 if closed_loop else -overlap), |
|
(batch_size * context_step - overlap), |
|
): |
|
if loop_setting == 'N' and context_step == 1: |
|
current_context = [e % video_length for e in range(j, j + batch_size * context_step, context_step)] |
|
first_context = [e % video_length for e in range(0, batch_size * context_step, context_step)] |
|
last_context = [e % video_length for e in range(video_length - batch_size * context_step, video_length, context_step)] |
|
def get_unsorted_index(lst): |
|
for i in range(1, len(lst)): |
|
if lst[i] < lst[i-1]: |
|
return i |
|
return None |
|
unsorted_index = get_unsorted_index(current_context) |
|
if unsorted_index is None: |
|
yield current_context |
|
elif both_close_loop: |
|
both_close_loop = False |
|
yield first_context |
|
elif unsorted_index < batch_size - overlap: |
|
yield last_context |
|
yield first_context |
|
else: |
|
both_close_loop = True |
|
yield last_context |
|
else: |
|
yield [e % video_length for e in range(j, j + batch_size * context_step, context_step)] |
|
|
|
|
|
def hack(self, params: AnimateDiffProcess): |
|
if AnimateDiffInfV2V.cfg_original_forward is not None: |
|
logger.info("CFGDenoiser already hacked") |
|
return |
|
|
|
logger.info(f"Hacking CFGDenoiser forward function.") |
|
AnimateDiffInfV2V.cfg_original_forward = CFGDenoiser.forward |
|
cn_script = self.cn_script |
|
prompt_scheduler = self.prompt_scheduler |
|
|
|
def mm_cn_select(context: List[int]): |
|
|
|
if cn_script and cn_script.latest_network: |
|
from scripts.hook import ControlModelType |
|
for control in cn_script.latest_network.control_params: |
|
if control.control_model_type not in [ControlModelType.IPAdapter, ControlModelType.Controlllite]: |
|
if control.hint_cond.shape[0] > len(context): |
|
control.hint_cond_backup = control.hint_cond |
|
control.hint_cond = control.hint_cond[context] |
|
control.hint_cond = control.hint_cond.to(device=devices.get_device_for("controlnet")) |
|
if control.hr_hint_cond is not None: |
|
if control.hr_hint_cond.shape[0] > len(context): |
|
control.hr_hint_cond_backup = control.hr_hint_cond |
|
control.hr_hint_cond = control.hr_hint_cond[context] |
|
control.hr_hint_cond = control.hr_hint_cond.to(device=devices.get_device_for("controlnet")) |
|
|
|
elif control.control_model_type == ControlModelType.IPAdapter and control.control_model.image_emb.shape[0] > len(context): |
|
control.control_model.image_emb_backup = control.control_model.image_emb |
|
control.control_model.image_emb = control.control_model.image_emb[context] |
|
control.control_model.uncond_image_emb_backup = control.control_model.uncond_image_emb |
|
control.control_model.uncond_image_emb = control.control_model.uncond_image_emb[context] |
|
elif control.control_model_type == ControlModelType.Controlllite: |
|
for module in control.control_model.modules.values(): |
|
if module.cond_image.shape[0] > len(context): |
|
module.cond_image_backup = module.cond_image |
|
module.set_cond_image(module.cond_image[context]) |
|
|
|
def mm_cn_restore(context: List[int]): |
|
|
|
if cn_script and cn_script.latest_network: |
|
from scripts.hook import ControlModelType |
|
for control in cn_script.latest_network.control_params: |
|
if control.control_model_type not in [ControlModelType.IPAdapter, ControlModelType.Controlllite]: |
|
if getattr(control, "hint_cond_backup", None) is not None: |
|
control.hint_cond_backup[context] = control.hint_cond.to(device="cpu") |
|
control.hint_cond = control.hint_cond_backup |
|
if control.hr_hint_cond is not None and getattr(control, "hr_hint_cond_backup", None) is not None: |
|
control.hr_hint_cond_backup[context] = control.hr_hint_cond.to(device="cpu") |
|
control.hr_hint_cond = control.hr_hint_cond_backup |
|
elif control.control_model_type == ControlModelType.IPAdapter and getattr(control.control_model, "image_emb_backup", None) is not None: |
|
control.control_model.image_emb = control.control_model.image_emb_backup |
|
control.control_model.uncond_image_emb = control.control_model.uncond_image_emb_backup |
|
elif control.control_model_type == ControlModelType.Controlllite: |
|
for module in control.control_model.modules.values(): |
|
if getattr(module, "cond_image_backup", None) is not None: |
|
module.set_cond_image(module.cond_image_backup) |
|
|
|
def mm_sd_forward(self, x_in, sigma_in, cond_in, image_cond_in, make_condition_dict): |
|
x_out = torch.zeros_like(x_in) |
|
for context in AnimateDiffInfV2V.uniform(self.step, params.video_length, params.batch_size, params.stride, params.overlap, params.closed_loop): |
|
if shared.opts.batch_cond_uncond: |
|
_context = context + [c + params.video_length for c in context] |
|
else: |
|
_context = context |
|
mm_cn_select(_context) |
|
out = self.inner_model( |
|
x_in[_context], sigma_in[_context], |
|
cond=make_condition_dict( |
|
cond_in[_context] if not isinstance(cond_in, dict) else {k: v[_context] for k, v in cond_in.items()}, |
|
image_cond_in[_context])) |
|
x_out = x_out.to(dtype=out.dtype) |
|
x_out[_context] = out |
|
mm_cn_restore(_context) |
|
return x_out |
|
|
|
def mm_cfg_forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond): |
|
if state.interrupted or state.skipped: |
|
raise sd_samplers_common.InterruptedException |
|
|
|
if sd_samplers_common.apply_refiner(self): |
|
cond = self.sampler.sampler_extra_args['cond'] |
|
uncond = self.sampler.sampler_extra_args['uncond'] |
|
|
|
|
|
|
|
is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0 |
|
|
|
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) |
|
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) |
|
|
|
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" |
|
|
|
if self.mask_before_denoising and self.mask is not None: |
|
x = self.init_latent * self.mask + self.nmask * x |
|
|
|
batch_size = len(conds_list) |
|
repeats = [len(conds_list[i]) for i in range(batch_size)] |
|
|
|
if shared.sd_model.model.conditioning_key == "crossattn-adm": |
|
image_uncond = torch.zeros_like(image_cond) |
|
make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm} |
|
else: |
|
image_uncond = image_cond |
|
if isinstance(uncond, dict): |
|
make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]} |
|
else: |
|
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]} |
|
|
|
if not is_edit_model: |
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x]) |
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) |
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond]) |
|
else: |
|
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x]) |
|
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma]) |
|
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)]) |
|
|
|
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond) |
|
cfg_denoiser_callback(denoiser_params) |
|
x_in = denoiser_params.x |
|
image_cond_in = denoiser_params.image_cond |
|
sigma_in = denoiser_params.sigma |
|
tensor = denoiser_params.text_cond |
|
uncond = denoiser_params.text_uncond |
|
skip_uncond = False |
|
|
|
|
|
if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model: |
|
skip_uncond = True |
|
x_in = x_in[:-batch_size] |
|
sigma_in = sigma_in[:-batch_size] |
|
|
|
self.padded_cond_uncond = False |
|
if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]: |
|
empty = shared.sd_model.cond_stage_model_empty_prompt |
|
num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1] |
|
|
|
if num_repeats < 0: |
|
tensor = pad_cond(tensor, -num_repeats, empty) |
|
self.padded_cond_uncond = True |
|
elif num_repeats > 0: |
|
uncond = pad_cond(uncond, num_repeats, empty) |
|
self.padded_cond_uncond = True |
|
|
|
if tensor.shape[1] == uncond.shape[1] or skip_uncond: |
|
prompt_closed_loop = (params.video_length > params.batch_size) and (params.closed_loop in ['R+P', 'A']) |
|
tensor = prompt_scheduler.multi_cond(tensor, prompt_closed_loop) |
|
if is_edit_model: |
|
cond_in = catenate_conds([tensor, uncond, uncond]) |
|
elif skip_uncond: |
|
cond_in = tensor |
|
else: |
|
cond_in = catenate_conds([tensor, uncond]) |
|
|
|
if shared.opts.batch_cond_uncond: |
|
x_out = mm_sd_forward(self, x_in, sigma_in, cond_in, image_cond_in, make_condition_dict) |
|
else: |
|
x_out = torch.zeros_like(x_in) |
|
for batch_offset in range(0, x_out.shape[0], batch_size): |
|
a = batch_offset |
|
b = a + batch_size |
|
x_out[a:b] = mm_sd_forward(self, x_in[a:b], sigma_in[a:b], subscript_cond(cond_in, a, b), subscript_cond(image_cond_in, a, b), make_condition_dict) |
|
else: |
|
x_out = torch.zeros_like(x_in) |
|
batch_size = batch_size*2 if shared.opts.batch_cond_uncond else batch_size |
|
for batch_offset in range(0, tensor.shape[0], batch_size): |
|
a = batch_offset |
|
b = min(a + batch_size, tensor.shape[0]) |
|
|
|
if not is_edit_model: |
|
c_crossattn = subscript_cond(tensor, a, b) |
|
else: |
|
c_crossattn = torch.cat([tensor[a:b]], uncond) |
|
|
|
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b])) |
|
|
|
if not skip_uncond: |
|
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:])) |
|
|
|
denoised_image_indexes = [x[0][0] for x in conds_list] |
|
if skip_uncond: |
|
fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes]) |
|
x_out = torch.cat([x_out, fake_uncond]) |
|
|
|
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model) |
|
cfg_denoised_callback(denoised_params) |
|
|
|
devices.test_for_nans(x_out, "unet") |
|
|
|
if is_edit_model: |
|
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale) |
|
elif skip_uncond: |
|
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0) |
|
else: |
|
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) |
|
|
|
if not self.mask_before_denoising and self.mask is not None: |
|
denoised = self.init_latent * self.mask + self.nmask * denoised |
|
|
|
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma) |
|
|
|
if opts.live_preview_content == "Prompt": |
|
preview = self.sampler.last_latent |
|
elif opts.live_preview_content == "Negative prompt": |
|
preview = self.get_pred_x0(x_in[-uncond.shape[0]:], x_out[-uncond.shape[0]:], sigma) |
|
else: |
|
preview = self.get_pred_x0(torch.cat([x_in[i:i+1] for i in denoised_image_indexes]), torch.cat([denoised[i:i+1] for i in denoised_image_indexes]), sigma) |
|
|
|
sd_samplers_common.store_latent(preview) |
|
|
|
after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps) |
|
cfg_after_cfg_callback(after_cfg_callback_params) |
|
denoised = after_cfg_callback_params.x |
|
|
|
self.step += 1 |
|
return denoised |
|
|
|
CFGDenoiser.forward = mm_cfg_forward |
|
|
|
|
|
def restore(self): |
|
if AnimateDiffInfV2V.cfg_original_forward is None: |
|
logger.info("CFGDenoiser already restored.") |
|
return |
|
|
|
logger.info(f"Restoring CFGDenoiser forward function.") |
|
CFGDenoiser.forward = AnimateDiffInfV2V.cfg_original_forward |
|
AnimateDiffInfV2V.cfg_original_forward = None |
|
|