extensions / sd-webui-animatediff /scripts /animatediff_infv2v.py
ehristoforu's picture
Upload folder using huggingface_hub
0163a2c verified
from typing import List
import numpy as np
import torch
from modules import prompt_parser, devices, sd_samplers_common, shared
from modules.shared import opts, state
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
from modules.sd_samplers_cfg_denoiser import CFGDenoiser, catenate_conds, subscript_cond, pad_cond
from scripts.animatediff_logger import logger_animatediff as logger
from scripts.animatediff_ui import AnimateDiffProcess
from scripts.animatediff_prompt import AnimateDiffPromptSchedule
class AnimateDiffInfV2V:
cfg_original_forward = None
def __init__(self, p, prompt_scheduler: AnimateDiffPromptSchedule):
try:
from scripts.external_code import find_cn_script
self.cn_script = find_cn_script(p.scripts)
except:
self.cn_script = None
self.prompt_scheduler = prompt_scheduler
# Returns fraction that has denominator that is a power of 2
@staticmethod
def ordered_halving(val):
# get binary value, padded with 0s for 64 bits
bin_str = f"{val:064b}"
# flip binary value, padding included
bin_flip = bin_str[::-1]
# convert binary to int
as_int = int(bin_flip, 2)
# divide by 1 << 64, equivalent to 2**64, or 18446744073709551616,
# or b10000000000000000000000000000000000000000000000000000000000000000 (1 with 64 zero's)
final = as_int / (1 << 64)
return final
# Generator that returns lists of latent indeces to diffuse on
@staticmethod
def uniform(
step: int = ...,
video_length: int = 0,
batch_size: int = 16,
stride: int = 1,
overlap: int = 4,
loop_setting: str = 'R-P',
):
if video_length <= batch_size:
yield list(range(batch_size))
return
closed_loop = (loop_setting == 'A')
stride = min(stride, int(np.ceil(np.log2(video_length / batch_size))) + 1)
for context_step in 1 << np.arange(stride):
pad = int(round(video_length * AnimateDiffInfV2V.ordered_halving(step)))
both_close_loop = False
for j in range(
int(AnimateDiffInfV2V.ordered_halving(step) * context_step) + pad,
video_length + pad + (0 if closed_loop else -overlap),
(batch_size * context_step - overlap),
):
if loop_setting == 'N' and context_step == 1:
current_context = [e % video_length for e in range(j, j + batch_size * context_step, context_step)]
first_context = [e % video_length for e in range(0, batch_size * context_step, context_step)]
last_context = [e % video_length for e in range(video_length - batch_size * context_step, video_length, context_step)]
def get_unsorted_index(lst):
for i in range(1, len(lst)):
if lst[i] < lst[i-1]:
return i
return None
unsorted_index = get_unsorted_index(current_context)
if unsorted_index is None:
yield current_context
elif both_close_loop: # last and this context are close loop
both_close_loop = False
yield first_context
elif unsorted_index < batch_size - overlap: # only this context is close loop
yield last_context
yield first_context
else: # this and next context are close loop
both_close_loop = True
yield last_context
else:
yield [e % video_length for e in range(j, j + batch_size * context_step, context_step)]
def hack(self, params: AnimateDiffProcess):
if AnimateDiffInfV2V.cfg_original_forward is not None:
logger.info("CFGDenoiser already hacked")
return
logger.info(f"Hacking CFGDenoiser forward function.")
AnimateDiffInfV2V.cfg_original_forward = CFGDenoiser.forward
cn_script = self.cn_script
prompt_scheduler = self.prompt_scheduler
def mm_cn_select(context: List[int]):
# take control images for current context.
if cn_script and cn_script.latest_network:
from scripts.hook import ControlModelType
for control in cn_script.latest_network.control_params:
if control.control_model_type not in [ControlModelType.IPAdapter, ControlModelType.Controlllite]:
if control.hint_cond.shape[0] > len(context):
control.hint_cond_backup = control.hint_cond
control.hint_cond = control.hint_cond[context]
control.hint_cond = control.hint_cond.to(device=devices.get_device_for("controlnet"))
if control.hr_hint_cond is not None:
if control.hr_hint_cond.shape[0] > len(context):
control.hr_hint_cond_backup = control.hr_hint_cond
control.hr_hint_cond = control.hr_hint_cond[context]
control.hr_hint_cond = control.hr_hint_cond.to(device=devices.get_device_for("controlnet"))
# IPAdapter and Controlllite are always on CPU.
elif control.control_model_type == ControlModelType.IPAdapter and control.control_model.image_emb.shape[0] > len(context):
control.control_model.image_emb_backup = control.control_model.image_emb
control.control_model.image_emb = control.control_model.image_emb[context]
control.control_model.uncond_image_emb_backup = control.control_model.uncond_image_emb
control.control_model.uncond_image_emb = control.control_model.uncond_image_emb[context]
elif control.control_model_type == ControlModelType.Controlllite:
for module in control.control_model.modules.values():
if module.cond_image.shape[0] > len(context):
module.cond_image_backup = module.cond_image
module.set_cond_image(module.cond_image[context])
def mm_cn_restore(context: List[int]):
# restore control images for next context
if cn_script and cn_script.latest_network:
from scripts.hook import ControlModelType
for control in cn_script.latest_network.control_params:
if control.control_model_type not in [ControlModelType.IPAdapter, ControlModelType.Controlllite]:
if getattr(control, "hint_cond_backup", None) is not None:
control.hint_cond_backup[context] = control.hint_cond.to(device="cpu")
control.hint_cond = control.hint_cond_backup
if control.hr_hint_cond is not None and getattr(control, "hr_hint_cond_backup", None) is not None:
control.hr_hint_cond_backup[context] = control.hr_hint_cond.to(device="cpu")
control.hr_hint_cond = control.hr_hint_cond_backup
elif control.control_model_type == ControlModelType.IPAdapter and getattr(control.control_model, "image_emb_backup", None) is not None:
control.control_model.image_emb = control.control_model.image_emb_backup
control.control_model.uncond_image_emb = control.control_model.uncond_image_emb_backup
elif control.control_model_type == ControlModelType.Controlllite:
for module in control.control_model.modules.values():
if getattr(module, "cond_image_backup", None) is not None:
module.set_cond_image(module.cond_image_backup)
def mm_sd_forward(self, x_in, sigma_in, cond_in, image_cond_in, make_condition_dict):
x_out = torch.zeros_like(x_in)
for context in AnimateDiffInfV2V.uniform(self.step, params.video_length, params.batch_size, params.stride, params.overlap, params.closed_loop):
if shared.opts.batch_cond_uncond:
_context = context + [c + params.video_length for c in context]
else:
_context = context
mm_cn_select(_context)
out = self.inner_model(
x_in[_context], sigma_in[_context],
cond=make_condition_dict(
cond_in[_context] if not isinstance(cond_in, dict) else {k: v[_context] for k, v in cond_in.items()},
image_cond_in[_context]))
x_out = x_out.to(dtype=out.dtype)
x_out[_context] = out
mm_cn_restore(_context)
return x_out
def mm_cfg_forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
if sd_samplers_common.apply_refiner(self):
cond = self.sampler.sampler_extra_args['cond']
uncond = self.sampler.sampler_extra_args['uncond']
# at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
# so is_edit_model is set to False to support AND composition.
is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
if self.mask_before_denoising and self.mask is not None:
x = self.init_latent * self.mask + self.nmask * x
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
if shared.sd_model.model.conditioning_key == "crossattn-adm":
image_uncond = torch.zeros_like(image_cond) # this should not be supported.
make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
else:
image_uncond = image_cond
if isinstance(uncond, dict):
make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
else:
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}
if not is_edit_model:
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
else:
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
cfg_denoiser_callback(denoiser_params)
x_in = denoiser_params.x
image_cond_in = denoiser_params.image_cond
sigma_in = denoiser_params.sigma
tensor = denoiser_params.text_cond
uncond = denoiser_params.text_uncond
skip_uncond = False
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
skip_uncond = True
x_in = x_in[:-batch_size]
sigma_in = sigma_in[:-batch_size]
self.padded_cond_uncond = False
if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
empty = shared.sd_model.cond_stage_model_empty_prompt
num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
if num_repeats < 0:
tensor = pad_cond(tensor, -num_repeats, empty)
self.padded_cond_uncond = True
elif num_repeats > 0:
uncond = pad_cond(uncond, num_repeats, empty)
self.padded_cond_uncond = True
if tensor.shape[1] == uncond.shape[1] or skip_uncond:
prompt_closed_loop = (params.video_length > params.batch_size) and (params.closed_loop in ['R+P', 'A']) # hook
tensor = prompt_scheduler.multi_cond(tensor, prompt_closed_loop) # hook
if is_edit_model:
cond_in = catenate_conds([tensor, uncond, uncond])
elif skip_uncond:
cond_in = tensor
else:
cond_in = catenate_conds([tensor, uncond])
if shared.opts.batch_cond_uncond:
x_out = mm_sd_forward(self, x_in, sigma_in, cond_in, image_cond_in, make_condition_dict) # hook
else:
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
x_out[a:b] = mm_sd_forward(self, x_in[a:b], sigma_in[a:b], subscript_cond(cond_in, a, b), subscript_cond(image_cond_in, a, b), make_condition_dict) # hook
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.opts.batch_cond_uncond else batch_size
for batch_offset in range(0, tensor.shape[0], batch_size):
a = batch_offset
b = min(a + batch_size, tensor.shape[0])
if not is_edit_model:
c_crossattn = subscript_cond(tensor, a, b)
else:
c_crossattn = torch.cat([tensor[a:b]], uncond)
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
if not skip_uncond:
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))
denoised_image_indexes = [x[0][0] for x in conds_list]
if skip_uncond:
fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
cfg_denoised_callback(denoised_params)
devices.test_for_nans(x_out, "unet")
if is_edit_model:
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
elif skip_uncond:
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
else:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if not self.mask_before_denoising and self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)
if opts.live_preview_content == "Prompt":
preview = self.sampler.last_latent
elif opts.live_preview_content == "Negative prompt":
preview = self.get_pred_x0(x_in[-uncond.shape[0]:], x_out[-uncond.shape[0]:], sigma)
else:
preview = self.get_pred_x0(torch.cat([x_in[i:i+1] for i in denoised_image_indexes]), torch.cat([denoised[i:i+1] for i in denoised_image_indexes]), sigma)
sd_samplers_common.store_latent(preview)
after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
cfg_after_cfg_callback(after_cfg_callback_params)
denoised = after_cfg_callback_params.x
self.step += 1
return denoised
CFGDenoiser.forward = mm_cfg_forward
def restore(self):
if AnimateDiffInfV2V.cfg_original_forward is None:
logger.info("CFGDenoiser already restored.")
return
logger.info(f"Restoring CFGDenoiser forward function.")
CFGDenoiser.forward = AnimateDiffInfV2V.cfg_original_forward
AnimateDiffInfV2V.cfg_original_forward = None